Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1999 Sep 15;342(Pt 3):715–719.

Editing of non-cognate aminoacyl adenylates by peptide synthetases.

M Pavela-Vrancic 1, R Dieckmann 1, H V Döhren 1, H Kleinkauf 1
PMCID: PMC1220514  PMID: 10477284

Abstract

Non-ribosomally formed peptides display both highly conserved and variable amino acid positions, the variations leading to a wide range of peptide families. Activation of the amino acid substrate proceeds in analogy to the ribosomal biosynthetic mechanism generating aminoacyl adenylate and acyl intermediates. To approach the mechanism of fidelity of amino acid selection, the stability of the aminoacyl adenylates was studied by employing a continuous coupled spectrophotometric assay. The apo-form of tyrocidine synthetase 1 (apo-TY1) was used, generating an l-phenylalanyl-adenylate intermediate stabilized by the interaction of two structural subdomains of the adenylation domain. Adenylates of substrate analogues have shown variable and reduced degrees of stability, thus leading to an enhanced generation of pyrophosphate due to hydrolysis and continuous adenylate formation. Discrimination of the non-aromatic amino acids l-Leu and l-Met, or l-Phe analogues such as p-amino- and p-chloro-l-Phe derivatives, as well as the stereospecific selection of l-Phe, is supported by less-stable adenylate intermediates exhibiting elevated susceptibility to hydrolysis. Breakdown of the l-phenylalanyl intermediate utilizing 2'-deoxy-ATP as the nucleotide substrate was significantly enhanced compared with the natural analogue. Apo-TY1 engineered at positions involved in adenylate formation showed variable protection against hydrolysis. The results imply that stability of the aminoacyl intermediates may act as an essential factor in substrate selection and fidelity of non-ribosomal-peptide-forming systems.

Full Text

The Full Text of this article is available as a PDF (95.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baltzinger M., Holler E. Catalytic mechanism of phenylalanyl-tRNA synthetase of Escherichia coli K10. Conformational change and tRNAPhe phenylalanylation are concerted. Biochemistry. 1982 May 11;21(10):2467–2476. doi: 10.1021/bi00539a028. [DOI] [PubMed] [Google Scholar]
  2. Cheng Q., Wang Z. X., Killilea S. D. A continuous spectrophotometric assay for protein phosphatases. Anal Biochem. 1995 Mar 20;226(1):68–73. doi: 10.1006/abio.1995.1192. [DOI] [PubMed] [Google Scholar]
  3. Conti E., Franks N. P., Brick P. Crystal structure of firefly luciferase throws light on a superfamily of adenylate-forming enzymes. Structure. 1996 Mar 15;4(3):287–298. doi: 10.1016/s0969-2126(96)00033-0. [DOI] [PubMed] [Google Scholar]
  4. Conti E., Stachelhaus T., Marahiel M. A., Brick P. Structural basis for the activation of phenylalanine in the non-ribosomal biosynthesis of gramicidin S. EMBO J. 1997 Jul 16;16(14):4174–4183. doi: 10.1093/emboj/16.14.4174. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Dieckmann R., Lee Y. O., van Liempt H., von Döhren H., Kleinkauf H. Expression of an active adenylate-forming domain of peptide synthetases corresponding to acyl-CoA-synthetases. FEBS Lett. 1995 Jan 3;357(2):212–216. doi: 10.1016/0014-5793(94)01342-x. [DOI] [PubMed] [Google Scholar]
  6. Dieckmann R., Pavela-Vrancic M., Pfeifer E., von Döhren H., Kleinkauf H. The adenylation domain of tyrocidine synthetase 1--structural and functional role of the interdomain linker region and the (S/T)GT(T/S)GXPKG core sequence. Eur J Biochem. 1997 Aug 1;247(3):1074–1082. doi: 10.1111/j.1432-1033.1997.01074.x. [DOI] [PubMed] [Google Scholar]
  7. Fersht A. R., Ashford J. S., Bruton C. J., Jakes R., Koch G. L., Hartley B. S. Active site titration and aminoacyl adenylate binding stoichiometry of aminoacyl-tRNA synthetases. Biochemistry. 1975 Jan 14;14(1):1–4. doi: 10.1021/bi00672a001. [DOI] [PubMed] [Google Scholar]
  8. Freist W., Pardowitz I., Cramer F. Isoleucyl-tRNA synthetase from bakers' yeast: multistep proofreading in discrimination between isoleucine and valine with modulated accuracy, a scheme for molecular recognition by energy dissipation. Biochemistry. 1985 Nov 19;24(24):7014–7023. doi: 10.1021/bi00345a040. [DOI] [PubMed] [Google Scholar]
  9. Gill S. C., von Hippel P. H. Calculation of protein extinction coefficients from amino acid sequence data. Anal Biochem. 1989 Nov 1;182(2):319–326. doi: 10.1016/0003-2697(89)90602-7. [DOI] [PubMed] [Google Scholar]
  10. Gocht M., Marahiel M. A. Analysis of core sequences in the D-Phe activating domain of the multifunctional peptide synthetase TycA by site-directed mutagenesis. J Bacteriol. 1994 May;176(9):2654–2662. doi: 10.1128/jb.176.9.2654-2662.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Jakubowski H., Goldman E. Editing of errors in selection of amino acids for protein synthesis. Microbiol Rev. 1992 Sep;56(3):412–429. doi: 10.1128/mr.56.3.412-429.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kallow W., von Döhren H., Kleinkauf H. Penicillin biosynthesis: energy requirement for tripeptide precursor formation by delta-(L-alpha-aminoadipyl)-L-cysteinyl-D-valine synthetase from Acremonium chrysogenum. Biochemistry. 1998 Apr 28;37(17):5947–5952. doi: 10.1021/bi971741o. [DOI] [PubMed] [Google Scholar]
  13. Kleinkauf H., von Doehren H. Bioactive peptide analogs: in vivo and in vitro production. Prog Drug Res. 1990;34:287–317. doi: 10.1007/978-3-0348-7128-0_8. [DOI] [PubMed] [Google Scholar]
  14. Kleinkauf H., von Döhren H. Applications of peptide synthetases in the synthesis of peptide analogues. Acta Biochim Pol. 1997;44(4):839–847. [PubMed] [Google Scholar]
  15. Kleinkauf H., von Döhren H. Enzymatic generation of complex peptides. Prog Drug Res. 1997;48:27–53. doi: 10.1007/978-3-0348-8861-5_2. [DOI] [PubMed] [Google Scholar]
  16. Lawen A., Traber R. Substrate specificities of cyclosporin synthetase and peptolide SDZ 214-103 synthetase. Comparison of the substrate specificities of the related multifunctional polypeptides. J Biol Chem. 1993 Sep 25;268(27):20452–20465. [PubMed] [Google Scholar]
  17. Lin S. X., Baltzinger M., Remy P. Fast kinetic study of yeast phenylalanyl-tRNA synthetase: an efficient discrimination between tyrosine and phenylalanine at the level of the aminoacyladenylate-enzyme complex. Biochemistry. 1983 Feb 1;22(3):681–689. doi: 10.1021/bi00272a024. [DOI] [PubMed] [Google Scholar]
  18. Lin S. X., Baltzinger M., Remy P. Fast kinetic study of yeast phenylalanyl-tRNA synthetase: role of tRNAPhe in the discrimination between tyrosine and phenylalanine. Biochemistry. 1984 Aug 28;23(18):4109–4116. doi: 10.1021/bi00313a015. [DOI] [PubMed] [Google Scholar]
  19. Lloyd A. J., Thomann H. U., Ibba M., Söll D. A broadly applicable continuous spectrophotometric assay for measuring aminoacyl-tRNA synthetase activity. Nucleic Acids Res. 1995 Aug 11;23(15):2886–2892. doi: 10.1093/nar/23.15.2886. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Marahiel Mohamed A., Stachelhaus Torsten, Mootz Henning D. Modular Peptide Synthetases Involved in Nonribosomal Peptide Synthesis. Chem Rev. 1997 Nov 10;97(7):2651–2674. doi: 10.1021/cr960029e. [DOI] [PubMed] [Google Scholar]
  21. Mootz H. D., Marahiel M. A. The tyrocidine biosynthesis operon of Bacillus brevis: complete nucleotide sequence and biochemical characterization of functional internal adenylation domains. J Bacteriol. 1997 Nov;179(21):6843–6850. doi: 10.1128/jb.179.21.6843-6850.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Mulvey R. S., Fersht A. R. Ligand binding stoichiometries, subunit structure, and slow transitions in aminoacyl-tRNA synthetases. Biochemistry. 1977 Sep 6;16(18):4005–4013. doi: 10.1021/bi00637a011. [DOI] [PubMed] [Google Scholar]
  23. Pavela-Vrancic M., Pfeifer E., Schröder W., von Döhren H., Kleinkauf H. Identification of the ATP binding site in tyrocidine synthetase 1 by selective modification with fluorescein 5'-isothiocyanate. J Biol Chem. 1994 May 27;269(21):14962–14966. [PubMed] [Google Scholar]
  24. Pavela-Vrancic M., Van Liempt H., Pfeifer E., Freist W., Von Döhren H. Nucleotide binding by multienzyme peptide synthetases. Eur J Biochem. 1994 Mar 1;220(2):535–542. doi: 10.1111/j.1432-1033.1994.tb18653.x. [DOI] [PubMed] [Google Scholar]
  25. Pfeifer E., Pavela-Vrancic M., von Döhren H., Kleinkauf H. Characterization of tyrocidine synthetase 1 (TY1): requirement of posttranslational modification for peptide biosynthesis. Biochemistry. 1995 Jun 6;34(22):7450–7459. doi: 10.1021/bi00022a019. [DOI] [PubMed] [Google Scholar]
  26. Rieger C. E., Lee J., Turnbull J. L. A continuous spectrophotometric assay for aspartate transcarbamylase and ATPases. Anal Biochem. 1997 Mar 1;246(1):86–95. doi: 10.1006/abio.1996.9962. [DOI] [PubMed] [Google Scholar]
  27. Saxholm H., Zimmer T. L., Laland S. G. The mechanism of the inhibition of gramicidin-S synthesis by D-leucine. Eur J Biochem. 1972 Oct 17;30(1):138–144. doi: 10.1111/j.1432-1033.1972.tb02080.x. [DOI] [PubMed] [Google Scholar]
  28. Stachelhaus T., Schneider A., Marahiel M. A. Rational design of peptide antibiotics by targeted replacement of bacterial and fungal domains. Science. 1995 Jul 7;269(5220):69–72. doi: 10.1126/science.7604280. [DOI] [PubMed] [Google Scholar]
  29. Upson R. H., Haugland R. P., Malekzadeh M. N., Haugland R. P. A spectrophotometric method to measure enzymatic activity in reactions that generate inorganic pyrophosphate. Anal Biochem. 1996 Dec 1;243(1):41–45. doi: 10.1006/abio.1996.0479. [DOI] [PubMed] [Google Scholar]
  30. Vater J., Mallow N., Gerhardt S., Gadow A., Kleinkauf H. Gramicidin S synthetase. Temperature dependence and thermodynamic parameters of substrate amino acid activation reactions. Biochemistry. 1985 Apr 9;24(8):2022–2027. doi: 10.1021/bi00329a033. [DOI] [PubMed] [Google Scholar]
  31. Vater J., Schlumbohm W., Salnikow J., Irrgang K. D., Miklus M., Choli T., Kleinkauf H. Proteinchemical and kinetic features of gramicidin S synthetase. Biol Chem Hoppe Seyler. 1989 Sep;370(9):1013–1018. doi: 10.1515/bchm3.1989.370.2.1013. [DOI] [PubMed] [Google Scholar]
  32. Webb M. R. A continuous spectrophotometric assay for inorganic phosphate and for measuring phosphate release kinetics in biological systems. Proc Natl Acad Sci U S A. 1992 Jun 1;89(11):4884–4887. doi: 10.1073/pnas.89.11.4884. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Wedler F. C., Ley B. W., Moyer M. L. A continuous visible spectrophotometric assay for aspartate transcarbamylase. Anal Biochem. 1994 May 1;218(2):449–453. doi: 10.1006/abio.1994.1205. [DOI] [PubMed] [Google Scholar]
  34. Wells T. N., Ho C. K., Fersht A. R. Free energy of hydrolysis of tyrosyl adenylate and its binding to wild-type and engineered mutant tyrosyl-tRNA synthetases. Biochemistry. 1986 Oct 21;25(21):6603–6608. doi: 10.1021/bi00369a040. [DOI] [PubMed] [Google Scholar]
  35. von Döhren Hans, Keller Ullrich, Vater Joachim, Zocher Rainer. Multifunctional Peptide Synthetases. Chem Rev. 1997 Nov 10;97(7):2675–2706. doi: 10.1021/cr9600262. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES