Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1999 Sep 15;342(Pt 3):721–728.

Cloning and sequencing of the cDNA species for mammalian dimeric dihydrodiol dehydrogenases.

E Arimitsu 1, S Aoki 1, S Ishikura 1, K Nakanishi 1, K Matsuura 1, A Hara 1
PMCID: PMC1220515  PMID: 10477285

Abstract

Cynomolgus and Japanese monkey kidneys, dog and pig livers and rabbit lens contain dimeric dihydrodiol dehydrogenase (EC 1.3.1.20) associated with high carbonyl reductase activity. Here we have isolated cDNA species for the dimeric enzymes by reverse transcriptase-PCR from human intestine in addition to the above five animal tissues. The amino acid sequences deduced from the monkey, pig and dog cDNA species perfectly matched the partial sequences of peptides digested from the respective enzymes of these animal tissues, and active recombinant proteins were expressed in a bacterial system from the monkey and human cDNA species. Northern blot analysis revealed the existence of a single 1.3 kb mRNA species for the enzyme in these animal tissues. The human enzyme shared 94%, 85%, 84% and 82% amino acid identity with the enzymes of the two monkey strains (their sequences were identical), the dog, the pig and the rabbit respectively. The sequences of the primate enzymes consisted of 335 amino acid residues and lacked one amino acid compared with the other animal enzymes. In contrast with previous reports that other types of dihydrodiol dehydrogenase, carbonyl reductases and enzymes with either activity belong to the aldo-keto reductase family or the short-chain dehydrogenase/reductase family, dimeric dihydrodiol dehydrogenase showed no sequence similarity with the members of the two protein families. The dimeric enzyme aligned with low degrees of identity (14-25%) with several prokaryotic proteins, in which 47 residues are strictly or highly conserved. Thus dimeric dihydrodiol dehydrogenase has a primary structure distinct from the previously known mammalian enzymes and is suggested to constitute a novel protein family with the prokaryotic proteins.

Full Text

The Full Text of this article is available as a PDF (213.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allaire M., Li Y., MacKenzie R. E., Cygler M. The 3-D structure of a folate-dependent dehydrogenase/cyclohydrolase bifunctional enzyme at 1.5 A resolution. Structure. 1998 Feb 15;6(2):173–182. doi: 10.1016/s0969-2126(98)00019-7. [DOI] [PubMed] [Google Scholar]
  2. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. Basic local alignment search tool. J Mol Biol. 1990 Oct 5;215(3):403–410. doi: 10.1016/S0022-2836(05)80360-2. [DOI] [PubMed] [Google Scholar]
  3. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  4. Deyashiki Y., Ogasawara A., Nakayama T., Nakanishi M., Miyabe Y., Sato K., Hara A. Molecular cloning of two human liver 3 alpha-hydroxysteroid/dihydrodiol dehydrogenase isoenzymes that are identical with chlordecone reductase and bile-acid binder. Biochem J. 1994 Apr 15;299(Pt 2):545–552. doi: 10.1042/bj2990545. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Flowers L., Bleczinski W. F., Burczynski M. E., Harvey R. G., Penning T. M. Disposition and biological activity of benzo[a]pyrene-7,8-dione. A genotoxic metabolite generated by dihydrodiol dehydrogenase. Biochemistry. 1996 Oct 22;35(42):13664–13672. doi: 10.1021/bi961077w. [DOI] [PubMed] [Google Scholar]
  6. Hanukoglu I., Gutfinger T. cDNA sequence of adrenodoxin reductase. Identification of NADP-binding sites in oxidoreductases. Eur J Biochem. 1989 Mar 15;180(2):479–484. doi: 10.1111/j.1432-1033.1989.tb14671.x. [DOI] [PubMed] [Google Scholar]
  7. Hara A., Hasebe K., Hayashibara M., Matsuura K., Nakayama T., Sawada H. Dihydrodiol dehydrogenases in guinea pig liver. Biochem Pharmacol. 1986 Nov 15;35(22):4005–4012. doi: 10.1016/0006-2952(86)90019-5. [DOI] [PubMed] [Google Scholar]
  8. Hara A., Mouri K., Sawada H. Purification and partial characterization of dimeric dihydrodiol dehydrogenase from monkey kidney. Biochem Biophys Res Commun. 1987 Jun 30;145(3):1260–1266. doi: 10.1016/0006-291x(87)91573-7. [DOI] [PubMed] [Google Scholar]
  9. Hara A., Nakayama T., Harada T., Kanazu T., Shinoda M., Deyashiki Y., Sawada H. Distribution and characterization of dihydrodiol dehydrogenases in mammalian ocular tissues. Biochem J. 1991 Apr 1;275(Pt 1):113–119. doi: 10.1042/bj2750113. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hara A., Shinoda M., Kanazu T., Nakayama T., Deyashiki Y., Sawada H. Inhibition of dimeric dihydrodiol dehydrogenases of rabbit and pig lens by ascorbic acid. Biochem J. 1991 Apr 1;275(Pt 1):121–126. doi: 10.1042/bj2750121. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hara A., Taniguchi H., Nakayama T., Sawada H. Purification and properties of multiple forms of dihydrodiol dehydrogenase from human liver. J Biochem. 1990 Aug;108(2):250–254. doi: 10.1093/oxfordjournals.jbchem.a123189. [DOI] [PubMed] [Google Scholar]
  12. Jez J. M., Bennett M. J., Schlegel B. P., Lewis M., Penning T. M. Comparative anatomy of the aldo-keto reductase superfamily. Biochem J. 1997 Sep 15;326(Pt 3):625–636. doi: 10.1042/bj3260625. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Jörnvall H., Persson B., Krook M., Atrian S., Gonzàlez-Duarte R., Jeffery J., Ghosh D. Short-chain dehydrogenases/reductases (SDR). Biochemistry. 1995 May 9;34(18):6003–6013. doi: 10.1021/bi00018a001. [DOI] [PubMed] [Google Scholar]
  14. Kashfi K., McDougall C. J., Dannenberg A. J. Comparative effects of omeprazole on xenobiotic metabolizing enzymes in the rat and human. Clin Pharmacol Ther. 1995 Dec;58(6):625–630. doi: 10.1016/0009-9236(95)90018-7. [DOI] [PubMed] [Google Scholar]
  15. Kingston R. L., Scopes R. K., Baker E. N. The structure of glucose-fructose oxidoreductase from Zymomonas mobilis: an osmoprotective periplasmic enzyme containing non-dissociable NADP. Structure. 1996 Dec 15;4(12):1413–1428. doi: 10.1016/s0969-2126(96)00149-9. [DOI] [PubMed] [Google Scholar]
  16. Koschinsky T., He C. J., Mitsuhashi T., Bucala R., Liu C., Buenting C., Heitmann K., Vlassara H. Orally absorbed reactive glycation products (glycotoxins): an environmental risk factor in diabetic nephropathy. Proc Natl Acad Sci U S A. 1997 Jun 10;94(12):6474–6479. doi: 10.1073/pnas.94.12.6474. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kozak M. Point mutations define a sequence flanking the AUG initiator codon that modulates translation by eukaryotic ribosomes. Cell. 1986 Jan 31;44(2):283–292. doi: 10.1016/0092-8674(86)90762-2. [DOI] [PubMed] [Google Scholar]
  18. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  19. Maser E. Xenobiotic carbonyl reduction and physiological steroid oxidoreduction. The pluripotency of several hydroxysteroid dehydrogenases. Biochem Pharmacol. 1995 Feb 14;49(4):421–440. doi: 10.1016/0006-2952(94)00330-o. [DOI] [PubMed] [Google Scholar]
  20. Matus-Leibovitch N., Nussenzveig D. R., Gershengorn M. C., Oron Y. Truncation of the thyrotropin-releasing hormone receptor carboxyl tail causes constitutive activity and leads to impaired responsiveness in Xenopus oocytes and AtT20 cells. J Biol Chem. 1995 Jan 20;270(3):1041–1047. doi: 10.1074/jbc.270.3.1041. [DOI] [PubMed] [Google Scholar]
  21. Nakagawa M., Matsuura K., Hara A., Sawada H., Bunai Y., Ohya I. Dimeric dihydrodiol dehydrogenase in monkey kidney. Substrate specificity, stereospecificity of hydrogen transfer, and distribution. J Biochem. 1989 Dec;106(6):1104–1109. doi: 10.1093/oxfordjournals.jbchem.a122973. [DOI] [PubMed] [Google Scholar]
  22. Nakanishi M., Deyashiki Y., Ohshima K., Hara A. Cloning, expression and tissue distribution of mouse tetrameric carbonyl reductase. Identity with an adipocyte 27-kDa protein. Eur J Biochem. 1995 Mar 1;228(2):381–387. [PubMed] [Google Scholar]
  23. Neidle E., Hartnett C., Ornston L. N., Bairoch A., Rekik M., Harayama S. cis-diol dehydrogenases encoded by the TOL pWW0 plasmid xylL gene and the Acinetobacter calcoaceticus chromosomal benD gene are members of the short-chain alcohol dehydrogenase superfamily. Eur J Biochem. 1992 Feb 15;204(1):113–120. doi: 10.1111/j.1432-1033.1992.tb16612.x. [DOI] [PubMed] [Google Scholar]
  24. Oesch F., Glatt H., Schmassmann H. The apparent ubiquity of epoxide hydratase in rat organs. Biochem Pharmacol. 1977 Apr 1;26(7):603–607. doi: 10.1016/0006-2952(77)90032-6. [DOI] [PubMed] [Google Scholar]
  25. Page R. D. TreeView: an application to display phylogenetic trees on personal computers. Comput Appl Biosci. 1996 Aug;12(4):357–358. doi: 10.1093/bioinformatics/12.4.357. [DOI] [PubMed] [Google Scholar]
  26. Pearson W. R., Lipman D. J. Improved tools for biological sequence comparison. Proc Natl Acad Sci U S A. 1988 Apr;85(8):2444–2448. doi: 10.1073/pnas.85.8.2444. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Penning T. M. 3 alpha-hydroxysteroid dehydrogenase: three dimensional structure and gene regulation. J Endocrinol. 1996 Sep;150 (Suppl):S175–S187. [PubMed] [Google Scholar]
  28. Penning T. M., Mukharji I., Barrows S., Talalay P. Purification and properties of a 3 alpha-hydroxysteroid dehydrogenase of rat liver cytosol and its inhibition by anti-inflammatory drugs. Biochem J. 1984 Sep 15;222(3):601–611. doi: 10.1042/bj2220601. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Rost B., Sander C. Prediction of protein secondary structure at better than 70% accuracy. J Mol Biol. 1993 Jul 20;232(2):584–599. doi: 10.1006/jmbi.1993.1413. [DOI] [PubMed] [Google Scholar]
  30. Sato K., Inazu A., Yamaguchi S., Nakayama T., Deyashiki Y., Sawada H., Hara A. Monkey 3-deoxyglucosone reductase: tissue distribution and purification of three multiple forms of the kidney enzyme that are identical with dihydrodiol dehydrogenase, aldehyde reductase, and aldose reductase. Arch Biochem Biophys. 1993 Dec;307(2):286–294. doi: 10.1006/abbi.1993.1591. [DOI] [PubMed] [Google Scholar]
  31. Sato K., Nakanishi M., Deyashiki Y., Hara A., Matsuura K., Ohya I. Purification and characterization of dimeric dihydrodiol dehydrogenase from dog liver. J Biochem. 1994 Sep;116(3):711–717. doi: 10.1093/oxfordjournals.jbchem.a124585. [DOI] [PubMed] [Google Scholar]
  32. Shinoda M., Hara A., Nakayama T., Deyashiki Y., Sawada H. Modification of pig liver dimeric dihydrodiol dehydrogenase with diethylpyrocarbonate and by rose bengal-sensitized photooxidation: evidence for an active-site histidine residue. J Biochem. 1992 Dec;112(6):834–839. doi: 10.1093/oxfordjournals.jbchem.a123985. [DOI] [PubMed] [Google Scholar]
  33. Shinoda M., Hara A., Nakayama T., Deyashiki Y., Yamaguchi S. Inhibition of dimeric dihydrodiol dehydrogenase by 4-hydroxyphenylketone derivatives: aspects of inhibitor structure and binding specificity. J Biochem. 1992 Dec;112(6):840–844. doi: 10.1093/oxfordjournals.jbchem.a123986. [DOI] [PubMed] [Google Scholar]
  34. Smithgall T. E., Harvey R. G., Penning T. M. Regio- and stereospecificity of homogeneous 3 alpha-hydroxysteroid-dihydrodiol dehydrogenase for trans-dihydrodiol metabolites of polycyclic aromatic hydrocarbons. J Biol Chem. 1986 May 15;261(14):6184–6191. [PubMed] [Google Scholar]
  35. Tarle I., Borhani D. W., Wilson D. K., Quiocho F. A., Petrash J. M. Probing the active site of human aldose reductase. Site-directed mutagenesis of Asp-43, Tyr-48, Lys-77, and His-110. J Biol Chem. 1993 Dec 5;268(34):25687–25693. [PubMed] [Google Scholar]
  36. Thompson J. D., Higgins D. G., Gibson T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994 Nov 11;22(22):4673–4680. doi: 10.1093/nar/22.22.4673. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Van Heyningen R., Pirie A. The metabolism of naphthalene and its toxic effect on the eye. Biochem J. 1967 Mar;102(3):842–852. doi: 10.1042/bj1020842. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Wiegert T., Sahm H., Sprenger G. A. The substitution of a single amino acid residue (Ser-116 --> Asp) alters NADP-containing glucose-fructose oxidoreductase of Zymomonas mobilis into a glucose dehydrogenase with dual coenzyme specificity. J Biol Chem. 1997 May 16;272(20):13126–13133. doi: 10.1074/jbc.272.20.13126. [DOI] [PubMed] [Google Scholar]
  40. Wörner W., Oesch F. Identity of dihydrodiol dehydrogenase and 3 alpha-hydroxysteroid dehydrogenase in rat but not in rabbit liver cytosol. FEBS Lett. 1984 May 21;170(2):263–267. doi: 10.1016/0014-5793(84)81325-3. [DOI] [PubMed] [Google Scholar]
  41. Yamaguchi S., Inazu A., Deyashiki Y., Nakayama T., Sato K., Miyabe Y., Hara A. Stereospecificity of trans-dihydrodiol oxidation by dimeric and monomeric dihydrodiol dehydrogenases from mammalian tissues. J Biochem. 1994 Mar;115(3):493–496. doi: 10.1093/oxfordjournals.jbchem.a124364. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES