Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1999 Oct 1;343(Pt 1):1–10.

Cloning and expression of a cDNA encoding a hepatic microsomal lipase that mobilizes stored triacylglycerol.

R Lehner 1, D E Vance 1
PMCID: PMC1220517  PMID: 10493905

Abstract

A microsomal triacylglycerol hydrolase (TGH) was recently purified from porcine liver [Lehner and Verger (1997) Biochemistry 36, 1861-1868]. To gain further insight into the function of TGH, we have cloned a cDNA encoding TGH from a rat liver cDNA library and generated McArdle RH7777 rat hepatoma cell lines that stably express the rat TGH. The putative protein derived from the cDNA sequence contains a cleavable signal sequence and a catalytic site serine residue present within a pentapeptide motif (GXSXG) that is conserved in all known lipases. TGH-transfected cells showed a 2-fold increase, compared with control cells, in the rate of depletion of prelabelled triacylglycerol stores. Thus, TGH is capable of hydrolysis of stored triacylglycerol. In contrast, the rate of turnover of labelled phosphatidylcholine was similar in both the vector- and TGH-transfected cells. Studies in TGH-transfected cells demonstrated that utilization of intracellular triacylglycerol pools for secretion was approx. 30% higher than in vector-transfected cells. Whereas phosphatidylcholine secretion was essentially the same in control and TGH-transfected cells, TGH-transfected cells also secreted an approx. 25% greater mass of triacylglycerol into the medium and had increased levels of apolipoprotein B100 in the very-low-density lipoprotein density range compared with control cells. The results suggest that the microsomal TGH actively participates in the mobilization of cytoplasmic triacylglycerol stores, some of which can be used for lipoprotein assembly.

Full Text

The Full Text of this article is available as a PDF (150.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bell R. M., Ballas L. M., Coleman R. A. Lipid topogenesis. J Lipid Res. 1981 Mar;22(3):391–403. [PubMed] [Google Scholar]
  2. Benoist F., Grand-Perret T. A sensitive method to analyze in vitro secretion of lipoproteins: distribution of apolipoproteins is modulated by oleic acid in HepG2 cells. J Lipid Res. 1995 Oct;36(10):2243–2250. [PubMed] [Google Scholar]
  3. Benoist F., Grand-Perret T. ApoB-100 secretion by HepG2 cells is regulated by the rate of triglyceride biosynthesis but not by intracellular lipid pools. Arterioscler Thromb Vasc Biol. 1996 Oct;16(10):1229–1235. doi: 10.1161/01.atv.16.10.1229. [DOI] [PubMed] [Google Scholar]
  4. Borén J., Rustaeus S., Olofsson S. O. Studies on the assembly of apolipoprotein B-100- and B-48-containing very low density lipoproteins in McA-RH7777 cells. J Biol Chem. 1994 Oct 14;269(41):25879–25888. [PubMed] [Google Scholar]
  5. Broadway N. M., Saggerson E. D. Microsomal carnitine acyltransferases. Biochem Soc Trans. 1995 Aug;23(3):490–494. doi: 10.1042/bst0230490. [DOI] [PubMed] [Google Scholar]
  6. Bánhegyi G., Csala M., Mandl J., Burchell A., Burchell B., Marcolongo P., Fulceri R., Benedetti A. Fatty acyl-CoA esters and the permeability of rat liver microsomal vesicles. Biochem J. 1996 Nov 15;320(Pt 1):343–344. doi: 10.1042/bj3200343. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Chalvardjian A., Rudnicki E. Determination of lipid phosphorus in the nanomolar range. Anal Biochem. 1970 Jul;36(1):225–226. doi: 10.1016/0003-2697(70)90352-0. [DOI] [PubMed] [Google Scholar]
  8. Chen C., Okayama H. High-efficiency transformation of mammalian cells by plasmid DNA. Mol Cell Biol. 1987 Aug;7(8):2745–2752. doi: 10.1128/mcb.7.8.2745. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Chung B. H., Wilkinson T., Geer J. C., Segrest J. P. Preparative and quantitative isolation of plasma lipoproteins: rapid, single discontinuous density gradient ultracentrifugation in a vertical rotor. J Lipid Res. 1980 Mar;21(3):284–291. [PubMed] [Google Scholar]
  10. Coleman R., Bell R. M. Evidence that biosynthesis of phosphatidylethanolamine, phosphatidylcholine, and triacylglycerol occurs on the cytoplasmic side of microsomal vesicles. J Cell Biol. 1978 Jan;76(1):245–253. doi: 10.1083/jcb.76.1.245. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Cygler M., Schrag J. D., Sussman J. L., Harel M., Silman I., Gentry M. K., Doctor B. P. Relationship between sequence conservation and three-dimensional structure in a large family of esterases, lipases, and related proteins. Protein Sci. 1993 Mar;2(3):366–382. doi: 10.1002/pro.5560020309. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Dixon J. L., Ginsberg H. N. Regulation of hepatic secretion of apolipoprotein B-containing lipoproteins: information obtained from cultured liver cells. J Lipid Res. 1993 Feb;34(2):167–179. [PubMed] [Google Scholar]
  13. Duerden J. M., Gibbons G. F. Storage, mobilization and secretion of cytosolic triacylglycerol in hepatocyte cultures. The role of insulin. Biochem J. 1990 Dec 15;272(3):583–587. doi: 10.1042/bj2720583. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. FOLCH J., LEES M., SLOANE STANLEY G. H. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 1957 May;226(1):497–509. [PubMed] [Google Scholar]
  15. Francone O. L., Kalopissis A. D., Griffaton G. Contribution of cytoplasmic storage triacylglycerol to VLDL-triacylglycerol in isolated rat hepatocytes. Biochim Biophys Acta. 1989 Mar 14;1002(1):28–36. doi: 10.1016/0005-2760(89)90060-x. [DOI] [PubMed] [Google Scholar]
  16. Gibbons G. F. A comparison of in-vitro models to study hepatic lipid and lipoprotein metabolism. Curr Opin Lipidol. 1994 Jun;5(3):191–199. doi: 10.1097/00041433-199405030-00006. [DOI] [PubMed] [Google Scholar]
  17. Gibbons G. F., Bartlett S. M., Sparks C. E., Sparks J. D. Extracellular fatty acids are not utilized directly for the synthesis of very-low-density lipoprotein in primary cultures of rat hepatocytes. Biochem J. 1992 Nov 1;287(Pt 3):749–753. doi: 10.1042/bj2870749. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Gibbons G. F., Burnham F. J. Effect of nutritional state on the utilization of fatty acids for hepatitic triacylglycerol synthesis and secretion as very-low-density lipoprotein. Biochem J. 1991 Apr 1;275(Pt 1):87–92. doi: 10.1042/bj2750087. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Gibbons G. F., Khurana R., Odwell A., Seelaender M. C. Lipid balance in HepG2 cells: active synthesis and impaired mobilization. J Lipid Res. 1994 Oct;35(10):1801–1808. [PubMed] [Google Scholar]
  20. Gibbons G. F., Wiggins D. Intracellular triacylglycerol lipase: its role in the assembly of hepatic very-low-density lipoprotein (VLDL). Adv Enzyme Regul. 1995;35:179–198. doi: 10.1016/0065-2571(94)00006-o. [DOI] [PubMed] [Google Scholar]
  21. Gibbons G. F., Wiggins D. The enzymology of hepatic very-low-density lipoprotein assembly. Biochem Soc Trans. 1995 Aug;23(3):495–500. doi: 10.1042/bst0230495. [DOI] [PubMed] [Google Scholar]
  22. Holm C., Belfrage P., Fredrikson G. Immunological evidence for the presence of hormone-sensitive lipase in rat tissues other than adipose tissue. Biochem Biophys Res Commun. 1987 Oct 14;148(1):99–105. doi: 10.1016/0006-291x(87)91081-3. [DOI] [PubMed] [Google Scholar]
  23. Korza G., Ozols J. Complete covalent structure of 60-kDa esterase isolated from 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced rabbit liver microsomes. J Biol Chem. 1988 Mar 5;263(7):3486–3495. [PubMed] [Google Scholar]
  24. Lankester D. L., Brown A. M., Zammit V. A. Use of cytosolic triacylglycerol hydrolysis products and of exogenous fatty acid for the synthesis of triacylglycerol secreted by cultured rat hepatocytes. J Lipid Res. 1998 Sep;39(9):1889–1895. [PubMed] [Google Scholar]
  25. Lehner R., Cui Z., Vance D. E. Subcellullar localization, developmental expression and characterization of a liver triacylglycerol hydrolase. Biochem J. 1999 Mar 15;338(Pt 3):761–768. [PMC free article] [PubMed] [Google Scholar]
  26. Lehner R., Kuksis A. Purification of an acyl-CoA hydrolase from rat intestinal microsomes. A candidate acyl-enzyme intermediate in glycerolipid acylation. J Biol Chem. 1993 Nov 25;268(33):24726–24733. [PubMed] [Google Scholar]
  27. Lehner R., Kuksis A. Triacylglycerol synthesis by an sn-1,2(2,3)-diacylglycerol transacylase from rat intestinal microsomes. J Biol Chem. 1993 Apr 25;268(12):8781–8786. [PubMed] [Google Scholar]
  28. Lehner R., Kuksis A. Triacylglycerol synthesis by purified triacylglycerol synthetase of rat intestinal mucosa. Role of acyl-CoA acyltransferase. J Biol Chem. 1995 Jun 9;270(23):13630–13636. doi: 10.1074/jbc.270.23.13630. [DOI] [PubMed] [Google Scholar]
  29. Lehner R., Verger R. Purification and characterization of a porcine liver microsomal triacylglycerol hydrolase. Biochemistry. 1997 Feb 18;36(7):1861–1868. doi: 10.1021/bi962186d. [DOI] [PubMed] [Google Scholar]
  30. Long R. M., Calabrese M. R., Martin B. M., Pohl L. R. Cloning and sequencing of a human liver carboxylesterase isoenzyme. Life Sci. 1991;48(11):PL43–PL49. doi: 10.1016/0024-3205(91)90515-d. [DOI] [PubMed] [Google Scholar]
  31. Matsushima M., Inoue H., Ichinose M., Tsukada S., Miki K., Kurokawa K., Takahashi T., Takahashi K. The nucleotide and deduced amino acid sequences of porcine liver proline- beta-naphthylamidase. Evidence for the identity with carboxylesterase. FEBS Lett. 1991 Nov 18;293(1-2):37–41. doi: 10.1016/0014-5793(91)81147-z. [DOI] [PubMed] [Google Scholar]
  32. McLeod R. S., Wang Y., Wang S., Rusiñol A., Links P., Yao Z. Apolipoprotein B sequence requirements for hepatic very low density lipoprotein assembly. Evidence that hydrophobic sequences within apolipoprotein B48 mediate lipid recruitment. J Biol Chem. 1996 Aug 2;271(31):18445–18455. doi: 10.1074/jbc.271.31.18445. [DOI] [PubMed] [Google Scholar]
  33. Murthy M. S., Pande S. V. Malonyl-CoA-sensitive and -insensitive carnitine palmitoyltransferase activities of microsomes are due to different proteins. J Biol Chem. 1994 Jul 15;269(28):18283–18286. [PubMed] [Google Scholar]
  34. Owen M. R., Corstorphine C. C., Zammit V. A. Overt and latent activities of diacylglycerol acytransferase in rat liver microsomes: possible roles in very-low-density lipoprotein triacylglycerol secretion. Biochem J. 1997 Apr 1;323(Pt 1):17–21. doi: 10.1042/bj3230017. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Ozols J. Isolation, properties, and the complete amino acid sequence of a second form of 60-kDa glycoprotein esterase. Orientation of the 60-kDa proteins in the microsomal membrane. J Biol Chem. 1989 Jul 25;264(21):12533–12545. [PubMed] [Google Scholar]
  36. Pindel E. V., Kedishvili N. Y., Abraham T. L., Brzezinski M. R., Zhang J., Dean R. A., Bosron W. F. Purification and cloning of a broad substrate specificity human liver carboxylesterase that catalyzes the hydrolysis of cocaine and heroin. J Biol Chem. 1997 Jun 6;272(23):14769–14775. doi: 10.1074/jbc.272.23.14769. [DOI] [PubMed] [Google Scholar]
  37. Rabilloud T., Carpentier G., Tarroux P. Improvement and simplification of low-background silver staining of proteins by using sodium dithionite. Electrophoresis. 1988 Jun;9(6):288–291. doi: 10.1002/elps.1150090608. [DOI] [PubMed] [Google Scholar]
  38. Robbi M., Beaufay H., Octave J. N. Nucleotide sequence of cDNA coding for rat liver pI 6.1 esterase (ES-10), a carboxylesterase located in the lumen of the endoplasmic reticulum. Biochem J. 1990 Jul 15;269(2):451–458. doi: 10.1042/bj2690451. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. SNYDER F., STEPHENS N. A simplified spectrophotometric determination of ester groups in lipids. Biochim Biophys Acta. 1959 Jul;34:244–245. doi: 10.1016/0006-3002(59)90255-0. [DOI] [PubMed] [Google Scholar]
  40. Tomoda H., Igarashi K., Omura S. Inhibition of acyl-CoA synthetase by triacsins. Biochim Biophys Acta. 1987 Oct 17;921(3):595–598. [PubMed] [Google Scholar]
  41. Wang Y., McLeod R. S., Yao Z. Normal activity of microsomal triglyceride transfer protein is required for the oleate-induced secretion of very low density lipoproteins containing apolipoprotein B from McA-RH7777 cells. J Biol Chem. 1997 May 9;272(19):12272–12278. doi: 10.1074/jbc.272.19.12272. [DOI] [PubMed] [Google Scholar]
  42. Wiggins D., Gibbons G. F. The lipolysis/esterification cycle of hepatic triacylglycerol. Its role in the secretion of very-low-density lipoprotein and its response to hormones and sulphonylureas. Biochem J. 1992 Jun 1;284(Pt 2):457–462. doi: 10.1042/bj2840457. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Wu X., Shang A., Jiang H., Ginsberg H. N. Low rates of apoB secretion from HepG2 cells result from reduced delivery of newly synthesized triglyceride to a "secretion-coupled" pool. J Lipid Res. 1996 Jun;37(6):1198–1206. [PubMed] [Google Scholar]
  44. Yan B., Yang D., Brady M., Parkinson A. Rat kidney carboxylesterase. Cloning, sequencing, cellular localization, and relationship to rat liver hydrolase. J Biol Chem. 1994 Nov 25;269(47):29688–29696. [PubMed] [Google Scholar]
  45. Yang L. Y., Kuksis A., Myher J. J., Steiner G. Contribution of de novo fatty acid synthesis to very low density lipoprotein triacylglycerols: evidence from mass isotopomer distribution analysis of fatty acids synthesized from [2H6]ethanol. J Lipid Res. 1996 Feb;37(2):262–274. [PubMed] [Google Scholar]
  46. Yang L. Y., Kuksis A., Myher J. J., Steiner G. Origin of triacylglycerol moiety of plasma very low density lipoproteins in the rat: structural studies. J Lipid Res. 1995 Jan;36(1):125–136. [PubMed] [Google Scholar]
  47. Zammit V. A. Insulin and the partitioning of hepatic fatty acid metabolism. Biochem Soc Trans. 1995 Aug;23(3):506–511. doi: 10.1042/bst0230506. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES