Abstract
Because HEK-293 cells are widely used for the functional expression of channels, exchangers and transporters involved in Ca(2+) homoeostasis, the properties of intracellular Ca(2+) stores and the methods used for measuring intracellular Ca(2+) release in HEK-293 cells were evaluated. Ca(2+) imaging was used to show caffeine-, carbachol- and thapsigargin-induced Ca(2+) release in HEK-293 cells transfected with ryanodine receptor (RyR) cDNA, but only carbachol- and thapsigargin-induced Ca(2+) release in untransfected HEK-293 cells. Intracellular Ca(2+) release in untransfected HEK-293 cells was also observed if medium changes were performed by aspirating and replacing fresh medium (stop-flow), but not if medium changes were performed by a continuous over-flow procedure. Stop-flow medium-change-induced Ca(2+) release in HEK-293 cells was independent of caffeine and ryanodine, demonstrating that it did not occur through RyR channels. Consistent with these observations was the observation that the level of expression of endogenous RyR proteins was below the limits of detection by Western blotting or [(3)H]ryanodine binding. Thus the level of endogenous expression of RyR is so low in HEK-293 cells as to provide a negligible background in relation to functional analysis of recombinant RyR molecules. These results are inconsistent with those of Querfurth et al. [Querfurth, Haughey, Greenway, Yacono, Golan and Geiger (1998) Biochem. J. 334, 79-86], who reported higher levels of endogenous RyR expression in untransfected HEK-293 cells.
Full Text
The Full Text of this article is available as a PDF (130.6 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bennett D. L., Bootman M. D., Berridge M. J., Cheek T. R. Ca2+ entry into PC12 cells initiated by ryanodine receptors or inositol 1,4,5-trisphosphate receptors. Biochem J. 1998 Jan 15;329(Pt 2):349–357. doi: 10.1042/bj3290349. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bennett D. L., Cheek T. R., Berridge M. J., De Smedt H., Parys J. B., Missiaen L., Bootman M. D. Expression and function of ryanodine receptors in nonexcitable cells. J Biol Chem. 1996 Mar 15;271(11):6356–6362. doi: 10.1074/jbc.271.11.6356. [DOI] [PubMed] [Google Scholar]
- Berridge M. J., Bootman M. D., Lipp P. Calcium--a life and death signal. Nature. 1998 Oct 15;395(6703):645–648. doi: 10.1038/27094. [DOI] [PubMed] [Google Scholar]
- Chen C., Okayama H. High-efficiency transformation of mammalian cells by plasmid DNA. Mol Cell Biol. 1987 Aug;7(8):2745–2752. doi: 10.1128/mcb.7.8.2745. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chen S. R., Ebisawa K., Li X., Zhang L. Molecular identification of the ryanodine receptor Ca2+ sensor. J Biol Chem. 1998 Jun 12;273(24):14675–14678. doi: 10.1074/jbc.273.24.14675. [DOI] [PubMed] [Google Scholar]
- Chen S. R., Leong P., Imredy J. P., Bartlett C., Zhang L., MacLennan D. H. Single-channel properties of the recombinant skeletal muscle Ca2+ release channel (ryanodine receptor). Biophys J. 1997 Oct;73(4):1904–1912. doi: 10.1016/S0006-3495(97)78221-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chen S. R., Li X., Ebisawa K., Zhang L. Functional characterization of the recombinant type 3 Ca2+ release channel (ryanodine receptor) expressed in HEK293 cells. J Biol Chem. 1997 Sep 26;272(39):24234–24246. doi: 10.1074/jbc.272.39.24234. [DOI] [PubMed] [Google Scholar]
- Du G. G., Imredy J. P., MacLennan D. H. Characterization of recombinant rabbit cardiac and skeletal muscle Ca2+ release channels (ryanodine receptors) with a novel [3H]ryanodine binding assay. J Biol Chem. 1998 Dec 11;273(50):33259–33266. doi: 10.1074/jbc.273.50.33259. [DOI] [PubMed] [Google Scholar]
- Du G. G., MacLennan D. H. Functional consequences of mutations of conserved, polar amino acids in transmembrane sequences of the Ca2+ release channel (ryanodine receptor) of rabbit skeletal muscle sarcoplasmic reticulum. J Biol Chem. 1998 Nov 27;273(48):31867–31872. doi: 10.1074/jbc.273.48.31867. [DOI] [PubMed] [Google Scholar]
- Gao L., Tripathy A., Lu X., Meissner G. Evidence for a role of C-terminal amino acid residues in skeletal muscle Ca2+ release channel (ryanodine receptor) function. FEBS Lett. 1997 Jul 21;412(1):223–226. doi: 10.1016/s0014-5793(97)00781-3. [DOI] [PubMed] [Google Scholar]
- Giannini G., Conti A., Mammarella S., Scrobogna M., Sorrentino V. The ryanodine receptor/calcium channel genes are widely and differentially expressed in murine brain and peripheral tissues. J Cell Biol. 1995 Mar;128(5):893–904. doi: 10.1083/jcb.128.5.893. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grynkiewicz G., Poenie M., Tsien R. Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem. 1985 Mar 25;260(6):3440–3450. [PubMed] [Google Scholar]
- Kaznacheyeva E., Lupu V. D., Bezprozvanny I. Single-channel properties of inositol (1,4,5)-trisphosphate receptor heterologously expressed in HEK-293 cells. J Gen Physiol. 1998 Jun;111(6):847–856. doi: 10.1085/jgp.111.6.847. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MacLennan D. H., Rice W. J., Green N. M. The mechanism of Ca2+ transport by sarco(endo)plasmic reticulum Ca2+-ATPases. J Biol Chem. 1997 Nov 14;272(46):28815–28818. doi: 10.1074/jbc.272.46.28815. [DOI] [PubMed] [Google Scholar]
- Maruyama K., MacLennan D. H. Mutation of aspartic acid-351, lysine-352, and lysine-515 alters the Ca2+ transport activity of the Ca2+-ATPase expressed in COS-1 cells. Proc Natl Acad Sci U S A. 1988 May;85(10):3314–3318. doi: 10.1073/pnas.85.10.3314. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Querfurth H. W., Haughey N. J., Greenway S. C., Yacono P. W., Golan D. E., Geiger J. D. Expression of ryanodine receptors in human embryonic kidney (HEK293) cells. Biochem J. 1998 Aug 15;334(Pt 1):79–86. doi: 10.1042/bj3340079. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Querfurth H. W., Jiang J., Geiger J. D., Selkoe D. J. Caffeine stimulates amyloid beta-peptide release from beta-amyloid precursor protein-transfected HEK293 cells. J Neurochem. 1997 Oct;69(4):1580–1591. doi: 10.1046/j.1471-4159.1997.69041580.x. [DOI] [PubMed] [Google Scholar]
- Rosales O. R., Isales C. M., Barrett P. Q., Brophy C., Sumpio B. E. Exposure of endothelial cells to cyclic strain induces elevations of cytosolic Ca2+ concentration through mobilization of intracellular and extracellular pools. Biochem J. 1997 Sep 1;326(Pt 2):385–392. doi: 10.1042/bj3260385. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tong J., McCarthy T. V., MacLennan D. H. Measurement of resting cytosolic Ca2+ concentrations and Ca2+ store size in HEK-293 cells transfected with malignant hyperthermia or central core disease mutant Ca2+ release channels. J Biol Chem. 1999 Jan 8;274(2):693–702. doi: 10.1074/jbc.274.2.693. [DOI] [PubMed] [Google Scholar]
- Tong J., Oyamada H., Demaurex N., Grinstein S., McCarthy T. V., MacLennan D. H. Caffeine and halothane sensitivity of intracellular Ca2+ release is altered by 15 calcium release channel (ryanodine receptor) mutations associated with malignant hyperthermia and/or central core disease. J Biol Chem. 1997 Oct 17;272(42):26332–26339. doi: 10.1074/jbc.272.42.26332. [DOI] [PubMed] [Google Scholar]
- Tunwell R. E., Lai F. A. Ryanodine receptor expression in the kidney and a non-excitable kidney epithelial cell. J Biol Chem. 1996 Nov 22;271(47):29583–29588. doi: 10.1074/jbc.271.47.29583. [DOI] [PubMed] [Google Scholar]
- Zhu X., Jiang M., Birnbaumer L. Receptor-activated Ca2+ influx via human Trp3 stably expressed in human embryonic kidney (HEK)293 cells. Evidence for a non-capacitative Ca2+ entry. J Biol Chem. 1998 Jan 2;273(1):133–142. doi: 10.1074/jbc.273.1.133. [DOI] [PubMed] [Google Scholar]