Abstract
Extracellular application of lysophosphatidic acid (LPA) elevated intracellular Ca(2+) concentration ([Ca(2+)](i)) in human SH-SY5Y neuroblastoma cells. The maximal response to LPA occurred between 0. 1 and 1 microM, at which point [Ca(2+)](i) was increased by approx. 500 nM. This increase was of similar magnitude to that caused by the muscarinic acetylcholine receptor agonist methacholine (MCh), although the initial rate of release by LPA was slower. Both LPA and MCh released Ca(2+) from intracellular stores, as assessed by inhibition of their effects by thapsigargin, a blocker of endoplasmic reticular Ca(2+) uptake, and by the persistence of their action in nominally Ca(2+)-free extracellular medium. Similarly, both agonists appeared to stimulate store-refilling Ca(2+) entry. MCh produced a marked elevation in cellular Ins(1,4,5)P(3) and stimulated [(3)H]InsP accumulation in the presence of Li(+). In contrast, LPA failed to stimulate detectable phosphoinositide turnover. Chronic down-regulation of Ins(1,4,5)P(3) receptor (InsP(3)R) proteins with MCh did not affect Ca(2+) responses to LPA. In addition, heparin, a competitive antagonist of InsP(3)Rs, blocked Ca(2+)-mobilization in permeabilized SH-SY5Y cells in response to MCh or exogenously added Ins(1,4,5)P(3), but failed to inhibit Ca(2+)-release induced by LPA. Elevation of [Ca(2+)](i) elicited by LPA was blocked by guanosine 5'-[beta-thio]-diphosphate, indicating that this agonist acts via a G-protein-coupled receptor. However, pertussis toxin was without effect on LPA-evoked [Ca(2+)](i) responses, suggesting that G(i/o)-proteins were not involved. In the absence of extracellular Ca(2+), N,N-dimethylsphingosine (DMS, 30 microM), a competitive inhibitor of sphingosine kinase, blocked LPA-induced Ca(2+) responses by almost 90%. In addition, MCh-induced Ca(2+) responses were also diminished by the addition of DMS, although to a lesser extent than with LPA. We conclude that LPA mobilizes intracellular Ca(2+)-stores in SH-SY5Y cells independently of the generation and action of Ins(1,4,5)P(3). Furthermore, the Ca(2+)-response to LPA appears to be dependent on sphingosine kinase activation and the potential generation of the putative second messenger sphingosine 1-phosphate.
Full Text
The Full Text of this article is available as a PDF (165.7 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Allouche S., Polastron J., Jauzac P. The delta-opioid receptor regulates activity of ryanodine receptors in the human neuroblastoma cell line SK-N-BE. J Neurochem. 1996 Dec;67(6):2461–2470. doi: 10.1046/j.1471-4159.1996.67062461.x. [DOI] [PubMed] [Google Scholar]
- An S., Bleu T., Hallmark O. G., Goetzl E. J. Characterization of a novel subtype of human G protein-coupled receptor for lysophosphatidic acid. J Biol Chem. 1998 Apr 3;273(14):7906–7910. doi: 10.1074/jbc.273.14.7906. [DOI] [PubMed] [Google Scholar]
- An S., Bleu T., Zheng Y., Goetzl E. J. Recombinant human G protein-coupled lysophosphatidic acid receptors mediate intracellular calcium mobilization. Mol Pharmacol. 1998 Nov;54(5):881–888. doi: 10.1124/mol.54.5.881. [DOI] [PubMed] [Google Scholar]
- An S., Dickens M. A., Bleu T., Hallmark O. G., Goetzl E. J. Molecular cloning of the human Edg2 protein and its identification as a functional cellular receptor for lysophosphatidic acid. Biochem Biophys Res Commun. 1997 Feb 24;231(3):619–622. doi: 10.1006/bbrc.1997.6150. [DOI] [PubMed] [Google Scholar]
- Bennett D. L., Cheek T. R., Berridge M. J., De Smedt H., Parys J. B., Missiaen L., Bootman M. D. Expression and function of ryanodine receptors in nonexcitable cells. J Biol Chem. 1996 Mar 15;271(11):6356–6362. doi: 10.1074/jbc.271.11.6356. [DOI] [PubMed] [Google Scholar]
- Berridge M. J. Inositol trisphosphate and calcium signalling. Nature. 1993 Jan 28;361(6410):315–325. doi: 10.1038/361315a0. [DOI] [PubMed] [Google Scholar]
- Boarder M. R., Challiss R. A. Role of protein kinase C in the regulation of histamine and bradykinin stimulated inositol polyphosphate turnover in adrenal chromaffin cells. Br J Pharmacol. 1992 Dec;107(4):1140–1145. doi: 10.1111/j.1476-5381.1992.tb13420.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Burford N. T., Tolbert L. M., Sadee W. Specific G protein activation and mu-opioid receptor internalization caused by morphine, DAMGO and endomorphin I. Eur J Pharmacol. 1998 Jan 19;342(1):123–126. doi: 10.1016/s0014-2999(97)01556-2. [DOI] [PubMed] [Google Scholar]
- Clementi E., Riccio M., Sciorati C., Nisticò G., Meldolesi J. The type 2 ryanodine receptor of neurosecretory PC12 cells is activated by cyclic ADP-ribose. Role of the nitric oxide/cGMP pathway. J Biol Chem. 1996 Jul 26;271(30):17739–17745. doi: 10.1074/jbc.271.30.17739. [DOI] [PubMed] [Google Scholar]
- Dixon R. J., Young K., Brunskill N. J. Lysophosphatidic acid-induced calcium mobilization and proliferation in kidney proximal tubular cells. Am J Physiol. 1999 Feb;276(2 Pt 2):F191–F198. doi: 10.1152/ajprenal.1999.276.2.F191. [DOI] [PubMed] [Google Scholar]
- Durieux M. E., Lynch K. R. Signalling properties of lysophosphatidic acid. Trends Pharmacol Sci. 1993 Jun;14(6):249–254. doi: 10.1016/0165-6147(93)90021-b. [DOI] [PubMed] [Google Scholar]
- Edsall L. C., Van Brocklyn J. R., Cuvillier O., Kleuser B., Spiegel S. N,N-Dimethylsphingosine is a potent competitive inhibitor of sphingosine kinase but not of protein kinase C: modulation of cellular levels of sphingosine 1-phosphate and ceramide. Biochemistry. 1998 Sep 15;37(37):12892–12898. doi: 10.1021/bi980744d. [DOI] [PubMed] [Google Scholar]
- Fukushima N., Kimura Y., Chun J. A single receptor encoded by vzg-1/lpA1/edg-2 couples to G proteins and mediates multiple cellular responses to lysophosphatidic acid. Proc Natl Acad Sci U S A. 1998 May 26;95(11):6151–6156. doi: 10.1073/pnas.95.11.6151. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ghosh T. K., Bian J., Gill D. L. Intracellular calcium release mediated by sphingosine derivatives generated in cells. Science. 1990 Jun 29;248(4963):1653–1656. doi: 10.1126/science.2163543. [DOI] [PubMed] [Google Scholar]
- Ghosh T. K., Bian J., Gill D. L. Sphingosine 1-phosphate generated in the endoplasmic reticulum membrane activates release of stored calcium. J Biol Chem. 1994 Sep 9;269(36):22628–22635. [PubMed] [Google Scholar]
- Grynkiewicz G., Poenie M., Tsien R. Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem. 1985 Mar 25;260(6):3440–3450. [PubMed] [Google Scholar]
- Guo Z., Liliom K., Fischer D. J., Bathurst I. C., Tomei L. D., Kiefer M. C., Tigyi G. Molecular cloning of a high-affinity receptor for the growth factor-like lipid mediator lysophosphatidic acid from Xenopus oocytes. Proc Natl Acad Sci U S A. 1996 Dec 10;93(25):14367–14372. doi: 10.1073/pnas.93.25.14367. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Guo Z., Liliom K., Fischer D. J., Bathurst I. C., Tomei L. D., Kiefer M. C., Tigyi G. Molecular cloning of a high-affinity receptor for the growth factor-like lipid mediator lysophosphatidic acid from Xenopus oocytes. Proc Natl Acad Sci U S A. 1996 Dec 10;93(25):14367–14372. doi: 10.1073/pnas.93.25.14367. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hecht J. H., Weiner J. A., Post S. R., Chun J. Ventricular zone gene-1 (vzg-1) encodes a lysophosphatidic acid receptor expressed in neurogenic regions of the developing cerebral cortex. J Cell Biol. 1996 Nov;135(4):1071–1083. doi: 10.1083/jcb.135.4.1071. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hildebrandt J. P., Hildebrandt P. Lysophosphatidic acid depletes intracellular calcium stores different from those mediating capacitative calcium entry in C6 rat glioma cells. Glia. 1997 Jan;19(1):67–73. doi: 10.1002/(sici)1098-1136(199701)19:1<67::aid-glia7>3.0.co;2-7. [DOI] [PubMed] [Google Scholar]
- Jalink K., Hengeveld T., Mulder S., Postma F. R., Simon M. F., Chap H., van der Marel G. A., van Boom J. H., van Blitterswijk W. J., Moolenaar W. H. Lysophosphatidic acid-induced Ca2+ mobilization in human A431 cells: structure-activity analysis. Biochem J. 1995 Apr 15;307(Pt 2):609–616. doi: 10.1042/bj3070609. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kindman L. A., Kim S., McDonald T. V., Gardner P. Characterization of a novel intracellular sphingolipid-gated Ca(2+)-permeable channel from rat basophilic leukemia cells. J Biol Chem. 1994 May 6;269(18):13088–13091. [PubMed] [Google Scholar]
- Lee M. J., Thangada S., Liu C. H., Thompson B. D., Hla T. Lysophosphatidic acid stimulates the G-protein-coupled receptor EDG-1 as a low affinity agonist. J Biol Chem. 1998 Aug 21;273(34):22105–22112. doi: 10.1074/jbc.273.34.22105. [DOI] [PubMed] [Google Scholar]
- Lee M. J., Van Brocklyn J. R., Thangada S., Liu C. H., Hand A. R., Menzeleev R., Spiegel S., Hla T. Sphingosine-1-phosphate as a ligand for the G protein-coupled receptor EDG-1. Science. 1998 Mar 6;279(5356):1552–1555. doi: 10.1126/science.279.5356.1552. [DOI] [PubMed] [Google Scholar]
- Lee Z. W., Kweon S. M., Kim B. C., Leem S. H., Shin I., Kim J. H., Ha K. S. Phosphatidic acid-induced elevation of intracellular Ca2+ is mediated by RhoA and H2O2 in Rat-2 fibroblasts. J Biol Chem. 1998 May 22;273(21):12710–12715. doi: 10.1074/jbc.273.21.12710. [DOI] [PubMed] [Google Scholar]
- Mackrill J. J., Challiss R. A., O'connell D. A., Lai F. A., Nahorski S. R. Differential expression and regulation of ryanodine receptor and myo-inositol 1,4,5-trisphosphate receptor Ca2+ release channels in mammalian tissues and cell lines. Biochem J. 1997 Oct 1;327(Pt 1):251–258. doi: 10.1042/bj3270251. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mackrill J. J., Wilcox R. A., Miyawaki A., Mikoshiba K., Nahorski S. R., Challiss R. A. Stable overexpression of the type-1 inositol 1,4,5-trisphosphate receptor in L fibroblasts: subcellular distribution and functional consequences. Biochem J. 1996 Sep 15;318(Pt 3):871–878. doi: 10.1042/bj3180871. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mao C., Kim S. H., Almenoff J. S., Rudner X. L., Kearney D. M., Kindman L. A. Molecular cloning and characterization of SCaMPER, a sphingolipid Ca2+ release-mediating protein from endoplasmic reticulum. Proc Natl Acad Sci U S A. 1996 Mar 5;93(5):1993–1996. doi: 10.1073/pnas.93.5.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mathes C., Fleig A., Penner R. Calcium release-activated calcium current (ICRAC) is a direct target for sphingosine. J Biol Chem. 1998 Sep 25;273(39):25020–25030. doi: 10.1074/jbc.273.39.25020. [DOI] [PubMed] [Google Scholar]
- Mattie M., Brooker G., Spiegel S. Sphingosine-1-phosphate, a putative second messenger, mobilizes calcium from internal stores via an inositol trisphosphate-independent pathway. J Biol Chem. 1994 Feb 4;269(5):3181–3188. [PubMed] [Google Scholar]
- Meyer zu Heringdorf D., Lass H., Alemany R., Laser K. T., Neumann E., Zhang C., Schmidt M., Rauen U., Jakobs K. H., van Koppen C. J. Sphingosine kinase-mediated Ca2+ signalling by G-protein-coupled receptors. EMBO J. 1998 May 15;17(10):2830–2837. doi: 10.1093/emboj/17.10.2830. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Meyer zu Heringdorf D., van Koppen C. J., Jakobs K. H. Molecular diversity of sphingolipid signalling. FEBS Lett. 1997 Jun 23;410(1):34–38. doi: 10.1016/s0014-5793(97)00320-7. [DOI] [PubMed] [Google Scholar]
- Moolenaar W. H., Kranenburg O., Postma F. R., Zondag G. C. Lysophosphatidic acid: G-protein signalling and cellular responses. Curr Opin Cell Biol. 1997 Apr;9(2):168–173. doi: 10.1016/s0955-0674(97)80059-2. [DOI] [PubMed] [Google Scholar]
- Moolenaar W. H. Lysophosphatidic acid, a multifunctional phospholipid messenger. J Biol Chem. 1995 Jun 2;270(22):12949–12952. doi: 10.1074/jbc.270.22.12949. [DOI] [PubMed] [Google Scholar]
- Plevin R., MacNulty E. E., Palmer S., Wakelam M. J. Differences in the regulation of endothelin-1- and lysophosphatidic-acid-stimulated Ins(1,4,5)P3 formation in rat-1 fibroblasts. Biochem J. 1991 Dec 15;280(Pt 3):609–615. doi: 10.1042/bj2800609. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Reiser C. O., Lanz T., Hofmann F., Hofer G., Rupprecht H. D., Goppelt-Struebe M. Lysophosphatidic acid-mediated signal-transduction pathways involved in the induction of the early-response genes prostaglandin G/H synthase-2 and Egr-1: a critical role for the mitogen-activated protein kinase p38 and for Rho proteins. Biochem J. 1998 Mar 15;330(Pt 3):1107–1114. doi: 10.1042/bj3301107. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shiono S., Kawamoto K., Yoshida N., Kondo T., Inagami T. Neurotransmitter release from lysophosphatidic acid stimulated PC12 cells: involvement of lysophosphatidic acid receptors. Biochem Biophys Res Commun. 1993 Jun 15;193(2):667–673. doi: 10.1006/bbrc.1993.1676. [DOI] [PubMed] [Google Scholar]
- Sorrentino V., Volpe P. Ryanodine receptors: how many, where and why? Trends Pharmacol Sci. 1993 Mar;14(3):98–103. doi: 10.1016/0165-6147(93)90072-r. [DOI] [PubMed] [Google Scholar]
- Takemura H., Imoto K., Sakano S., Kaneko M., Ohshika H. Lysophosphatidic acid-sensitive intracellular Ca2+ store does not regulate Ca2+ entry at plasma membrane in Jurkat human T-cells. Biochem J. 1996 Oct 15;319(Pt 2):393–397. doi: 10.1042/bj3190393. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thomson F. J., Perkins L., Ahern D., Clark M. Identification and characterization of a lysophosphatidic acid receptor. Mol Pharmacol. 1994 Apr;45(4):718–723. [PubMed] [Google Scholar]
- Tigyi G., Fischer D. J., Sebök A., Marshall F., Dyer D. L., Miledi R. Lysophosphatidic acid-induced neurite retraction in PC12 cells: neurite-protective effects of cyclic AMP signaling. J Neurochem. 1996 Feb;66(2):549–558. doi: 10.1046/j.1471-4159.1996.66020549.x. [DOI] [PubMed] [Google Scholar]
- Tigyi G., Fischer D. J., Sebök A., Yang C., Dyer D. L., Miledi R. Lysophosphatidic acid-induced neurite retraction in PC12 cells: control by phosphoinositide-Ca2+ signaling and Rho. J Neurochem. 1996 Feb;66(2):537–548. doi: 10.1046/j.1471-4159.1996.66020537.x. [DOI] [PubMed] [Google Scholar]
- Tigyi J., Tigyi G., Liliom K., Miledi R. Local anesthetics inhibit receptors coupled to phosphoinositide signaling in Xenopus oocytes. Pflugers Arch. 1997 Feb;433(4):478–487. doi: 10.1007/s004240050303. [DOI] [PubMed] [Google Scholar]
- Wojcikiewicz R. J., Nahorski S. R. Chronic muscarinic stimulation of SH-SY5Y neuroblastoma cells suppresses inositol 1,4,5-trisphosphate action. Parallel inhibition of inositol 1,4,5-trisphosphate-induced Ca2+ mobilization and inositol 1,4,5-trisphosphate binding. J Biol Chem. 1991 Nov 25;266(33):22234–22241. [PubMed] [Google Scholar]
- Young K. W., Pinnock R. D., Nahorski S. R. Determination of the inositol (1,4,5) trisphosphate requirement for histamine- and substance P-induced Ca2+ mobilisation in human U373 MG astrocytoma cells. Cell Calcium. 1998 Jul;24(1):59–70. doi: 10.1016/s0143-4160(98)90089-6. [DOI] [PubMed] [Google Scholar]
- Zhao H., Khademazad M., Muallem S. Agonist-mediated Ca2+ release in permeabilized UMR-106-01 cells. Transport properties and generation of inositol 1,4,5-trisphosphate. J Biol Chem. 1990 Sep 5;265(25):14822–14827. [PubMed] [Google Scholar]
- Zondag G. C., Postma F. R., Etten I. V., Verlaan I., Moolenaar W. H. Sphingosine 1-phosphate signalling through the G-protein-coupled receptor Edg-1. Biochem J. 1998 Mar 1;330(Pt 2):605–609. doi: 10.1042/bj3300605. [DOI] [PMC free article] [PubMed] [Google Scholar]
- van Corven E. J., Groenink A., Jalink K., Eichholtz T., Moolenaar W. H. Lysophosphatidate-induced cell proliferation: identification and dissection of signaling pathways mediated by G proteins. Cell. 1989 Oct 6;59(1):45–54. doi: 10.1016/0092-8674(89)90868-4. [DOI] [PubMed] [Google Scholar]
