Abstract
Chinese hamster ovary (CHO) cells stably expressing alpha(2) adrenergic receptor (alpha(2)AR) were pretreated with cholera toxin (CTX) and then treated with or without PMA. The alpha(2A)AR-mediated inhibition of forskolin-stimulated cAMP accumulation was completely ablated by CTX pretreatment only after additional treatment with PMA. Although the addition of cycloheximide (protein synthesis inhibitor) and H-89 (cAMP dependent protein kinase inhibitor) did not completely counteract the negative regulation, the elevation of cAMP was a primary factor for negative regulation by treatment with CTX and PMA. In contrast with the cAMP response, the inhibition of membrane adenylate cyclase activity and the agonist competition curve were not influenced by treatment with CTX or PMA, suggesting that a cytosolic factor was involved in this negative regulation. The m2-muscarinic-acetylcholine-receptor-mediated inhibition of the forskolin-stimulated accumulation of cAMP was also attenuated by treatment with CTX and PMA. The ablation of alpha(2A)AR-mediated inhibition was not observed when alpha(2A)AR was expressed in Rat2 fibroblast cells, suggesting that this negative regulation is not dependent on the receptor type but is instead a phenomenon common to G(i)-coupled receptors in CHO cells. Reverse-transcriptase-mediated PCR and Northern blot analysis showed that the expression of GOS8/RGS2 mRNA, which is a member of the regulator of G-protein signalling (RGS) group of proteins, was considerably increased by pretreatment with CTX. These results indicate a novel regulatory pathway, whereby a cytosolic factor induced by the elevation of cellular cAMP levels negatively regulates G(i) signalling in a protein-kinase-C-dependent manner.
Full Text
The Full Text of this article is available as a PDF (181.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aantaa R., Marjamäki A., Scheinin M. Molecular pharmacology of alpha 2-adrenoceptor subtypes. Ann Med. 1995 Aug;27(4):439–449. doi: 10.3109/07853899709002452. [DOI] [PubMed] [Google Scholar]
- Attramadal H., Arriza J. L., Aoki C., Dawson T. M., Codina J., Kwatra M. M., Snyder S. H., Caron M. G., Lefkowitz R. J. Beta-arrestin2, a novel member of the arrestin/beta-arrestin gene family. J Biol Chem. 1992 Sep 5;267(25):17882–17890. [PubMed] [Google Scholar]
- Berman D. M., Gilman A. G. Mammalian RGS proteins: barbarians at the gate. J Biol Chem. 1998 Jan 16;273(3):1269–1272. doi: 10.1074/jbc.273.3.1269. [DOI] [PubMed] [Google Scholar]
- Bouvier M., Guilbault N., Bonin H. Phorbol-ester-induced phosphorylation of the beta 2-adrenergic receptor decreases its coupling to Gs. FEBS Lett. 1991 Feb 25;279(2):243–248. doi: 10.1016/0014-5793(91)80159-z. [DOI] [PubMed] [Google Scholar]
- Chatterjee T. K., Eapen A. K., Fisher R. A. A truncated form of RGS3 negatively regulates G protein-coupled receptor stimulation of adenylyl cyclase and phosphoinositide phospholipase C. J Biol Chem. 1997 Jun 13;272(24):15481–15487. doi: 10.1074/jbc.272.24.15481. [DOI] [PubMed] [Google Scholar]
- Chen C., Zheng B., Han J., Lin S. C. Characterization of a novel mammalian RGS protein that binds to Galpha proteins and inhibits pheromone signaling in yeast. J Biol Chem. 1997 Mar 28;272(13):8679–8685. doi: 10.1074/jbc.272.13.8679. [DOI] [PubMed] [Google Scholar]
- Convents A., De Backer J. P., André C., Vauquelin G. Desensitization of alpha 2-adrenergic receptors in NG 108 15 cells by (-)-adrenaline and phorbol 12-myristate 13-acetate. Biochem J. 1989 Aug 15;262(1):245–251. doi: 10.1042/bj2620245. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dohlman H. G., Thorner J. RGS proteins and signaling by heterotrimeric G proteins. J Biol Chem. 1997 Feb 14;272(7):3871–3874. doi: 10.1074/jbc.272.7.3871. [DOI] [PubMed] [Google Scholar]
- Doupnik C. A., Davidson N., Lester H. A., Kofuji P. RGS proteins reconstitute the rapid gating kinetics of gbetagamma-activated inwardly rectifying K+ channels. Proc Natl Acad Sci U S A. 1997 Sep 16;94(19):10461–10466. doi: 10.1073/pnas.94.19.10461. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Druey K. M., Blumer K. J., Kang V. H., Kehrl J. H. Inhibition of G-protein-mediated MAP kinase activation by a new mammalian gene family. Nature. 1996 Feb 22;379(6567):742–746. doi: 10.1038/379742a0. [DOI] [PubMed] [Google Scholar]
- Eason M. G., Kurose H., Holt B. D., Raymond J. R., Liggett S. B. Simultaneous coupling of alpha 2-adrenergic receptors to two G-proteins with opposing effects. Subtype-selective coupling of alpha 2C10, alpha 2C4, and alpha 2C2 adrenergic receptors to Gi and Gs. J Biol Chem. 1992 Aug 5;267(22):15795–15801. [PubMed] [Google Scholar]
- Ferguson S. S., Downey W. E., 3rd, Colapietro A. M., Barak L. S., Ménard L., Caron M. G. Role of beta-arrestin in mediating agonist-promoted G protein-coupled receptor internalization. Science. 1996 Jan 19;271(5247):363–366. doi: 10.1126/science.271.5247.363. [DOI] [PubMed] [Google Scholar]
- Goodman O. B., Jr, Krupnick J. G., Santini F., Gurevich V. V., Penn R. B., Gagnon A. W., Keen J. H., Benovic J. L. Beta-arrestin acts as a clathrin adaptor in endocytosis of the beta2-adrenergic receptor. Nature. 1996 Oct 3;383(6599):447–450. doi: 10.1038/383447a0. [DOI] [PubMed] [Google Scholar]
- Gudermann T., Schöneberg T., Schultz G. Functional and structural complexity of signal transduction via G-protein-coupled receptors. Annu Rev Neurosci. 1997;20:399–427. doi: 10.1146/annurev.neuro.20.1.399. [DOI] [PubMed] [Google Scholar]
- Hepler J. R., Berman D. M., Gilman A. G., Kozasa T. RGS4 and GAIP are GTPase-activating proteins for Gq alpha and block activation of phospholipase C beta by gamma-thio-GTP-Gq alpha. Proc Natl Acad Sci U S A. 1997 Jan 21;94(2):428–432. doi: 10.1073/pnas.94.2.428. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Heximer S. P., Cristillo A. D., Forsdyke D. R. Comparison of mRNA expression of two regulators of G-protein signaling, RGS1/BL34/1R20 and RGS2/G0S8, in cultured human blood mononuclear cells. DNA Cell Biol. 1997 May;16(5):589–598. doi: 10.1089/dna.1997.16.589. [DOI] [PubMed] [Google Scholar]
- Heximer S. P., Watson N., Linder M. E., Blumer K. J., Hepler J. R. RGS2/G0S8 is a selective inhibitor of Gqalpha function. Proc Natl Acad Sci U S A. 1997 Dec 23;94(26):14389–14393. doi: 10.1073/pnas.94.26.14389. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Huang C., Hepler J. R., Gilman A. G., Mumby S. M. Attenuation of Gi- and Gq-mediated signaling by expression of RGS4 or GAIP in mammalian cells. Proc Natl Acad Sci U S A. 1997 Jun 10;94(12):6159–6163. doi: 10.1073/pnas.94.12.6159. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hunt T. W., Fields T. A., Casey P. J., Peralta E. G. RGS10 is a selective activator of G alpha i GTPase activity. Nature. 1996 Sep 12;383(6596):175–177. doi: 10.1038/383175a0. [DOI] [PubMed] [Google Scholar]
- Iacovelli L., Franchetti R., Masini M., De Blasi A. GRK2 and beta-arrestin 1 as negative regulators of thyrotropin receptor-stimulated response. Mol Endocrinol. 1996 Sep;10(9):1138–1146. doi: 10.1210/mend.10.9.8885248. [DOI] [PubMed] [Google Scholar]
- Ingi T., Krumins A. M., Chidiac P., Brothers G. M., Chung S., Snow B. E., Barnes C. A., Lanahan A. A., Siderovski D. P., Ross E. M. Dynamic regulation of RGS2 suggests a novel mechanism in G-protein signaling and neuronal plasticity. J Neurosci. 1998 Sep 15;18(18):7178–7188. doi: 10.1523/JNEUROSCI.18-18-07178.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jansson C. C., Savola J. M., Akerman K. E. Different sensitivity of alpha 2A-C10 and alpha 2C-C4 receptor subtypes in coupling to inhibition of cAMP accumulation. Biochem Biophys Res Commun. 1994 Mar 15;199(2):869–875. doi: 10.1006/bbrc.1994.1309. [DOI] [PubMed] [Google Scholar]
- Jewell-Motz E. A., Liggett S. B. G protein-coupled receptor kinase specificity for phosphorylation and desensitization of alpha2-adrenergic receptor subtypes. J Biol Chem. 1996 Jul 26;271(30):18082–18087. doi: 10.1074/jbc.271.30.18082. [DOI] [PubMed] [Google Scholar]
- Kikkawa H., Isogaya M., Nagao T., Kurose H. The role of the seventh transmembrane region in high affinity binding of a beta 2-selective agonist TA-2005. Mol Pharmacol. 1998 Jan;53(1):128–134. doi: 10.1124/mol.53.1.128. [DOI] [PubMed] [Google Scholar]
- Klein U., Ramirez M. T., Kobilka B. K., von Zastrow M. A novel interaction between adrenergic receptors and the alpha-subunit of eukaryotic initiation factor 2B. J Biol Chem. 1997 Aug 1;272(31):19099–19102. doi: 10.1074/jbc.272.31.19099. [DOI] [PubMed] [Google Scholar]
- Koelle M. R., Horvitz H. R. EGL-10 regulates G protein signaling in the C. elegans nervous system and shares a conserved domain with many mammalian proteins. Cell. 1996 Jan 12;84(1):115–125. doi: 10.1016/s0092-8674(00)80998-8. [DOI] [PubMed] [Google Scholar]
- Kozasa T., Jiang X., Hart M. J., Sternweis P. M., Singer W. D., Gilman A. G., Bollag G., Sternweis P. C. p115 RhoGEF, a GTPase activating protein for Galpha12 and Galpha13. Science. 1998 Jun 26;280(5372):2109–2111. doi: 10.1126/science.280.5372.2109. [DOI] [PubMed] [Google Scholar]
- Krupnick J. G., Benovic J. L. The role of receptor kinases and arrestins in G protein-coupled receptor regulation. Annu Rev Pharmacol Toxicol. 1998;38:289–319. doi: 10.1146/annurev.pharmtox.38.1.289. [DOI] [PubMed] [Google Scholar]
- Kurose H., Lefkowitz R. J. Differential desensitization and phosphorylation of three cloned and transfected alpha 2-adrenergic receptor subtypes. J Biol Chem. 1994 Apr 1;269(13):10093–10099. [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Mende U., Kagen A., Cohen A., Aramburu J., Schoen F. J., Neer E. J. Transient cardiac expression of constitutively active Galphaq leads to hypertrophy and dilated cardiomyopathy by calcineurin-dependent and independent pathways. Proc Natl Acad Sci U S A. 1998 Nov 10;95(23):13893–13898. doi: 10.1073/pnas.95.23.13893. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Neill J. D., Duck L. W., Sellers J. C., Musgrove L. C., Scheschonka A., Druey K. M., Kehrl J. H. Potential role for a regulator of G protein signaling (RGS3) in gonadotropin-releasing hormone (GnRH) stimulated desensitization. Endocrinology. 1997 Feb;138(2):843–846. doi: 10.1210/endo.138.2.5034. [DOI] [PubMed] [Google Scholar]
- Parruti G., Peracchia F., Sallese M., Ambrosini G., Masini M., Rotilio D., De Blasi A. Molecular analysis of human beta-arrestin-1: cloning, tissue distribution, and regulation of expression. Identification of two isoforms generated by alternative splicing. J Biol Chem. 1993 May 5;268(13):9753–9761. [PubMed] [Google Scholar]
- Pfeifer A., Nürnberg B., Kamm S., Uhde M., Schultz G., Ruth P., Hofmann F. Cyclic GMP-dependent protein kinase blocks pertussis toxin-sensitive hormone receptor signaling pathways in Chinese hamster ovary cells. J Biol Chem. 1995 Apr 21;270(16):9052–9059. doi: 10.1074/jbc.270.16.9052. [DOI] [PubMed] [Google Scholar]
- Pippig S., Andexinger S., Daniel K., Puzicha M., Caron M. G., Lefkowitz R. J., Lohse M. J. Overexpression of beta-arrestin and beta-adrenergic receptor kinase augment desensitization of beta 2-adrenergic receptors. J Biol Chem. 1993 Feb 15;268(5):3201–3208. [PubMed] [Google Scholar]
- Premont R. T., Inglese J., Lefkowitz R. J. Protein kinases that phosphorylate activated G protein-coupled receptors. FASEB J. 1995 Feb;9(2):175–182. doi: 10.1096/fasebj.9.2.7781920. [DOI] [PubMed] [Google Scholar]
- Prezeau L., Richman J. G., Edwards S. W., Limbird L. E. The zeta isoform of 14-3-3 proteins interacts with the third intracellular loop of different alpha2-adrenergic receptor subtypes. J Biol Chem. 1999 May 7;274(19):13462–13469. doi: 10.1074/jbc.274.19.13462. [DOI] [PubMed] [Google Scholar]
- Salomon Y., Londos C., Rodbell M. A highly sensitive adenylate cyclase assay. Anal Biochem. 1974 Apr;58(2):541–548. doi: 10.1016/0003-2697(74)90222-x. [DOI] [PubMed] [Google Scholar]
- Siderovski D. P., Hessel A., Chung S., Mak T. W., Tyers M. A new family of regulators of G-protein-coupled receptors? Curr Biol. 1996 Feb 1;6(2):211–212. doi: 10.1016/s0960-9822(02)00454-2. [DOI] [PubMed] [Google Scholar]
- Spence S., Rena G., Sullivan M., Erdogan S., Houslay M. D. Receptor-mediated stimulation of lipid signalling pathways in CHO cells elicits the rapid transient induction of the PDE1B isoform of Ca2+/calmodulin-stimulated cAMP phosphodiesterase. Biochem J. 1997 Jan 1;321(Pt 1):157–163. doi: 10.1042/bj3210157. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Srinivasa S. P., Bernstein L. S., Blumer K. J., Linder M. E. Plasma membrane localization is required for RGS4 function in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 1998 May 12;95(10):5584–5589. doi: 10.1073/pnas.95.10.5584. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sunahara R. K., Dessauer C. W., Gilman A. G. Complexity and diversity of mammalian adenylyl cyclases. Annu Rev Pharmacol Toxicol. 1996;36:461–480. doi: 10.1146/annurev.pa.36.040196.002333. [DOI] [PubMed] [Google Scholar]
- Tang W. J., Hurley J. H. Catalytic mechanism and regulation of mammalian adenylyl cyclases. Mol Pharmacol. 1998 Aug;54(2):231–240. doi: 10.1124/mol.54.2.231. [DOI] [PubMed] [Google Scholar]
- Tsuga H., Kameyama K., Haga T., Honma T., Lameh J., Sadée W. Internalization and down-regulation of human muscarinic acetylcholine receptor m2 subtypes. Role of third intracellular m2 loop and G protein-coupled receptor kinase 2. J Biol Chem. 1998 Feb 27;273(9):5323–5330. doi: 10.1074/jbc.273.9.5323. [DOI] [PubMed] [Google Scholar]
- Watson N., Linder M. E., Druey K. M., Kehrl J. H., Blumer K. J. RGS family members: GTPase-activating proteins for heterotrimeric G-protein alpha-subunits. Nature. 1996 Sep 12;383(6596):172–175. doi: 10.1038/383172a0. [DOI] [PubMed] [Google Scholar]
- Yan Y., Chi P. P., Bourne H. R. RGS4 inhibits Gq-mediated activation of mitogen-activated protein kinase and phosphoinositide synthesis. J Biol Chem. 1997 May 2;272(18):11924–11927. doi: 10.1074/jbc.272.18.11924. [DOI] [PubMed] [Google Scholar]