Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1999 Oct 1;343(Pt 1):99–105.

The N-terminal LIM domain negatively regulates the kinase activity of LIM-kinase 1.

K Nagata 1, K Ohashi 1, N Yang 1, K Mizuno 1
PMCID: PMC1220529  PMID: 10493917

Abstract

LIM-kinase 1 (LIMK1, where LIM is an acronym of the three gene products Lin-11, Isl-1 and Mec-3) is a serine/threonine kinase that phosphorylates cofilin and regulates actin cytoskeletal reorganization. LIMK1 contains two LIM domains and a PDZ (an acronym of the three proteins PSD-95, Dlg and ZO-1) domain in the N-terminal half and a kinase domain in the C-terminal half. In this study we examined the role of the extra-catalytic region in the regulation of kinase activity of LIMK1. Limited proteolysis of LIMK1 resulted in the production of the 35-40-kDa kinase core fragments with 3.5-5. 5-fold increased kinase activity. The LIMK1 mutants with deleted LIM domains (DeltaLIM) or conserved cysteines in the two LIM domains replaced with glycines (dmLIMK1) had 3-7-fold higher kinase activities in vitro, compared with the wild-type LIMK1. The C-terminal kinase fragment of LIMK1 bound to the LIM domain but not to the PDZ domain. Furthermore, the LIM fragment dose-dependently inhibited the kinase catalytic activity of the kinase core fragment of LIMK1. Taken together, these results suggest that the N-terminal LIM domain negatively regulates the kinase activity of LIMK1 by direct interaction with the C-terminal kinase domain. In addition, expression of the DeltaLIM mutant in cultured cells induced punctate accumulation of actin filaments, an event distinct from the pattern of actin organization induced by expression of the wild-type LIMK1, suggesting that the LIM domain plays a role in the function of LIMK1 in vivo.

Full Text

The Full Text of this article is available as a PDF (262.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Agnew B. J., Minamide L. S., Bamburg J. R. Reactivation of phosphorylated actin depolymerizing factor and identification of the regulatory site. J Biol Chem. 1995 Jul 21;270(29):17582–17587. doi: 10.1074/jbc.270.29.17582. [DOI] [PubMed] [Google Scholar]
  2. Agulnick A. D., Taira M., Breen J. J., Tanaka T., Dawid I. B., Westphal H. Interactions of the LIM-domain-binding factor Ldb1 with LIM homeodomain proteins. Nature. 1996 Nov 21;384(6606):270–272. doi: 10.1038/384270a0. [DOI] [PubMed] [Google Scholar]
  3. Arber S., Barbayannis F. A., Hanser H., Schneider C., Stanyon C. A., Bernard O., Caroni P. Regulation of actin dynamics through phosphorylation of cofilin by LIM-kinase. Nature. 1998 Jun 25;393(6687):805–809. doi: 10.1038/31729. [DOI] [PubMed] [Google Scholar]
  4. Bernard O., Ganiatsas S., Kannourakis G., Dringen R. Kiz-1, a protein with LIM zinc finger and kinase domains, is expressed mainly in neurons. Cell Growth Differ. 1994 Nov;5(11):1159–1171. [PubMed] [Google Scholar]
  5. Breen J. J., Agulnick A. D., Westphal H., Dawid I. B. Interactions between LIM domains and the LIM domain-binding protein Ldb1. J Biol Chem. 1998 Feb 20;273(8):4712–4717. doi: 10.1074/jbc.273.8.4712. [DOI] [PubMed] [Google Scholar]
  6. Brown M. C., Perrotta J. A., Turner C. E. Identification of LIM3 as the principal determinant of paxillin focal adhesion localization and characterization of a novel motif on paxillin directing vinculin and focal adhesion kinase binding. J Cell Biol. 1996 Nov;135(4):1109–1123. doi: 10.1083/jcb.135.4.1109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Dawid I. B., Breen J. J., Toyama R. LIM domains: multiple roles as adapters and functional modifiers in protein interactions. Trends Genet. 1998 Apr;14(4):156–162. doi: 10.1016/s0168-9525(98)01424-3. [DOI] [PubMed] [Google Scholar]
  8. Frangiskakis J. M., Ewart A. K., Morris C. A., Mervis C. B., Bertrand J., Robinson B. F., Klein B. P., Ensing G. J., Everett L. A., Green E. D. LIM-kinase1 hemizygosity implicated in impaired visuospatial constructive cognition. Cell. 1996 Jul 12;86(1):59–69. doi: 10.1016/s0092-8674(00)80077-x. [DOI] [PubMed] [Google Scholar]
  9. Hiraoka J., Okano I., Higuchi O., Yang N., Mizuno K. Self-association of LIM-kinase 1 mediated by the interaction between an N-terminal LIM domain and a C-terminal kinase domain. FEBS Lett. 1996 Dec 9;399(1-2):117–121. doi: 10.1016/s0014-5793(96)01303-8. [DOI] [PubMed] [Google Scholar]
  10. Johnson L. N., Noble M. E., Owen D. J. Active and inactive protein kinases: structural basis for regulation. Cell. 1996 Apr 19;85(2):149–158. doi: 10.1016/s0092-8674(00)81092-2. [DOI] [PubMed] [Google Scholar]
  11. Jurata L. W., Gill G. N. Structure and function of LIM domains. Curr Top Microbiol Immunol. 1998;228:75–113. doi: 10.1007/978-3-642-80481-6_4. [DOI] [PubMed] [Google Scholar]
  12. Jurata L. W., Kenny D. A., Gill G. N. Nuclear LIM interactor, a rhombotin and LIM homeodomain interacting protein, is expressed early in neuronal development. Proc Natl Acad Sci U S A. 1996 Oct 15;93(21):11693–11698. doi: 10.1073/pnas.93.21.11693. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Jurata L. W., Pfaff S. L., Gill G. N. The nuclear LIM domain interactor NLI mediates homo- and heterodimerization of LIM domain transcription factors. J Biol Chem. 1998 Feb 6;273(6):3152–3157. doi: 10.1074/jbc.273.6.3152. [DOI] [PubMed] [Google Scholar]
  14. Kemp B. E., Parker M. W., Hu S., Tiganis T., House C. Substrate and pseudosubstrate interactions with protein kinases: determinants of specificity. Trends Biochem Sci. 1994 Nov;19(11):440–444. doi: 10.1016/0968-0004(94)90126-0. [DOI] [PubMed] [Google Scholar]
  15. Kuroda S., Tokunaga C., Kiyohara Y., Higuchi O., Konishi H., Mizuno K., Gill G. N., Kikkawa U. Protein-protein interaction of zinc finger LIM domains with protein kinase C. J Biol Chem. 1996 Dec 6;271(49):31029–31032. doi: 10.1074/jbc.271.49.31029. [DOI] [PubMed] [Google Scholar]
  16. Mitchison T. J., Cramer L. P. Actin-based cell motility and cell locomotion. Cell. 1996 Feb 9;84(3):371–379. doi: 10.1016/s0092-8674(00)81281-7. [DOI] [PubMed] [Google Scholar]
  17. Mizuno K., Okano I., Ohashi K., Nunoue K., Kuma K., Miyata T., Nakamura T. Identification of a human cDNA encoding a novel protein kinase with two repeats of the LIM/double zinc finger motif. Oncogene. 1994 Jun;9(6):1605–1612. [PubMed] [Google Scholar]
  18. Moarefi I., LaFevre-Bernt M., Sicheri F., Huse M., Lee C. H., Kuriyan J., Miller W. T. Activation of the Src-family tyrosine kinase Hck by SH3 domain displacement. Nature. 1997 Feb 13;385(6617):650–653. doi: 10.1038/385650a0. [DOI] [PubMed] [Google Scholar]
  19. Moon A., Drubin D. G. The ADF/cofilin proteins: stimulus-responsive modulators of actin dynamics. Mol Biol Cell. 1995 Nov;6(11):1423–1431. doi: 10.1091/mbc.6.11.1423. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Mori T., Okano I., Mizuno K., Tohyama M., Wanaka A. Comparison of tissue distribution of two novel serine/threonine kinase genes containing the LIM motif (LIMK-1 and LIMK-2) in the developing rat. Brain Res Mol Brain Res. 1997 May;45(2):247–254. doi: 10.1016/s0169-328x(96)00257-4. [DOI] [PubMed] [Google Scholar]
  21. Nunoue K., Ohashi K., Okano I., Mizuno K. LIMK-1 and LIMK-2, two members of a LIM motif-containing protein kinase family. Oncogene. 1995 Aug 17;11(4):701–710. [PubMed] [Google Scholar]
  22. Ohashi K., Toshima J., Tajinda K., Nakamura T., Mizuno K. Molecular cloning of a chicken lung cDNA encoding a novel protein kinase with N-terminal two LIM/double zinc finger motifs. J Biochem. 1994 Sep;116(3):636–642. doi: 10.1093/oxfordjournals.jbchem.a124573. [DOI] [PubMed] [Google Scholar]
  23. Okano I., Hiraoka J., Otera H., Nunoue K., Ohashi K., Iwashita S., Hirai M., Mizuno K. Identification and characterization of a novel family of serine/threonine kinases containing two N-terminal LIM motifs. J Biol Chem. 1995 Dec 29;270(52):31321–31330. doi: 10.1074/jbc.270.52.31321. [DOI] [PubMed] [Google Scholar]
  24. Pomiès P., Louis H. A., Beckerle M. C. CRP1, a LIM domain protein implicated in muscle differentiation, interacts with alpha-actinin. J Cell Biol. 1997 Oct 6;139(1):157–168. doi: 10.1083/jcb.139.1.157. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Ponting C. P., Phillips C., Davies K. E., Blake D. J. PDZ domains: targeting signalling molecules to sub-membranous sites. Bioessays. 1997 Jun;19(6):469–479. doi: 10.1002/bies.950190606. [DOI] [PubMed] [Google Scholar]
  26. Roof D. J., Hayes A., Adamian M., Chishti A. H., Li T. Molecular characterization of abLIM, a novel actin-binding and double zinc finger protein. J Cell Biol. 1997 Aug 11;138(3):575–588. doi: 10.1083/jcb.138.3.575. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Schmeichel K. L., Beckerle M. C. The LIM domain is a modular protein-binding interface. Cell. 1994 Oct 21;79(2):211–219. doi: 10.1016/0092-8674(94)90191-0. [DOI] [PubMed] [Google Scholar]
  28. Sánchez-García I., Osada H., Forster A., Rabbitts T. H. The cysteine-rich LIM domains inhibit DNA binding by the associated homeodomain in Isl-1. EMBO J. 1993 Nov;12(11):4243–4250. doi: 10.1002/j.1460-2075.1993.tb06108.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Sánchez-García I., Rabbitts T. H. The LIM domain: a new structural motif found in zinc-finger-like proteins. Trends Genet. 1994 Sep;10(9):315–320. doi: 10.1016/0168-9525(94)90034-5. [DOI] [PubMed] [Google Scholar]
  30. Taira M., Otani H., Saint-Jeannet J. P., Dawid I. B. Role of the LIM class homeodomain protein Xlim-1 in neural and muscle induction by the Spemann organizer in Xenopus. Nature. 1994 Dec 15;372(6507):677–679. doi: 10.1038/372677a0. [DOI] [PubMed] [Google Scholar]
  31. Theriot J. A. Accelerating on a treadmill: ADF/cofilin promotes rapid actin filament turnover in the dynamic cytoskeleton. J Cell Biol. 1997 Mar 24;136(6):1165–1168. doi: 10.1083/jcb.136.6.1165. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Van Aelst L., D'Souza-Schorey C. Rho GTPases and signaling networks. Genes Dev. 1997 Sep 15;11(18):2295–2322. doi: 10.1101/gad.11.18.2295. [DOI] [PubMed] [Google Scholar]
  33. Wang J. Y., Frenzel K. E., Wen D., Falls D. L. Transmembrane neuregulins interact with LIM kinase 1, a cytoplasmic protein kinase implicated in development of visuospatial cognition. J Biol Chem. 1998 Aug 7;273(32):20525–20534. doi: 10.1074/jbc.273.32.20525. [DOI] [PubMed] [Google Scholar]
  34. Xia H., Winokur S. T., Kuo W. L., Altherr M. R., Bredt D. S. Actinin-associated LIM protein: identification of a domain interaction between PDZ and spectrin-like repeat motifs. J Cell Biol. 1997 Oct 20;139(2):507–515. doi: 10.1083/jcb.139.2.507. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Yang N., Higuchi O., Mizuno K. Cytoplasmic localization of LIM-kinase 1 is directed by a short sequence within the PDZ domain. Exp Cell Res. 1998 May 25;241(1):242–252. doi: 10.1006/excr.1998.4053. [DOI] [PubMed] [Google Scholar]
  36. Yang N., Higuchi O., Ohashi K., Nagata K., Wada A., Kangawa K., Nishida E., Mizuno K. Cofilin phosphorylation by LIM-kinase 1 and its role in Rac-mediated actin reorganization. Nature. 1998 Jun 25;393(6687):809–812. doi: 10.1038/31735. [DOI] [PubMed] [Google Scholar]
  37. Yang N., Mizuno K. Nuclear export of LIM-kinase 1, mediated by two leucine-rich nuclear-export signals within the PDZ domain. Biochem J. 1999 Mar 15;338(Pt 3):793–798. [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES