Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1999 Oct 1;343(Pt 1):115–124.

Pathway alignment: application to the comparative analysis of glycolytic enzymes.

T Dandekar 1, S Schuster 1, B Snel 1, M Huynen 1, P Bork 1
PMCID: PMC1220531  PMID: 10493919

Abstract

Comparative analysis of metabolic pathways in different genomes yields important information on their evolution, on pharmacological targets and on biotechnological applications. In this study on glycolysis, three alternative ways of comparing biochemical pathways are combined: (1) analysis and comparison of biochemical data, (2) pathway analysis based on the concept of elementary modes, and (3) a comparative genome analysis of 17 completely sequenced genomes. The analysis reveals a surprising plasticity of the glycolytic pathway. Isoenzymes in different species are identified and compared; deviations from the textbook standard are detailed. Several potential pharmacological targets and by-passes (such as the Entner-Doudoroff pathway) to glycolysis are examined and compared in the different species. Archaean, bacterial and parasite specific adaptations are identified and described.

Full Text

The Full Text of this article is available as a PDF (157.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anda P., Gebbia J. A., Backenson P. B., Coleman J. L., Benach J. L. A glyceraldehyde-3-phosphate dehydrogenase homolog in Borrelia burgdorferi and Borrelia hermsii. Infect Immun. 1996 Jan;64(1):262–268. doi: 10.1128/iai.64.1.262-268.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Angell S., Schwarz E., Bibb M. J. The glucose kinase gene of Streptomyces coelicolor A3(2): its nucleotide sequence, transcriptional analysis and role in glucose repression. Mol Microbiol. 1992 Oct;6(19):2833–2844. doi: 10.1111/j.1365-2958.1992.tb01463.x. [DOI] [PubMed] [Google Scholar]
  3. Bork P., Dandekar T., Diaz-Lazcoz Y., Eisenhaber F., Huynen M., Yuan Y. Predicting function: from genes to genomes and back. J Mol Biol. 1998 Nov 6;283(4):707–725. doi: 10.1006/jmbi.1998.2144. [DOI] [PubMed] [Google Scholar]
  4. Bork P., Sander C., Valencia A. Convergent evolution of similar enzymatic function on different protein folds: the hexokinase, ribokinase, and galactokinase families of sugar kinases. Protein Sci. 1993 Jan;2(1):31–40. doi: 10.1002/pro.5560020104. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Galperin M. Y., Brenner S. E. Using metabolic pathway databases for functional annotation. Trends Genet. 1998 Aug;14(8):332–333. doi: 10.1016/s0168-9525(98)01523-6. [DOI] [PubMed] [Google Scholar]
  6. Gay P., Delobbe A. Fructose transport in Bacillus subtilis. Eur J Biochem. 1977 Oct 3;79(2):363–373. doi: 10.1111/j.1432-1033.1977.tb11817.x. [DOI] [PubMed] [Google Scholar]
  7. Gebbia J. A., Backenson P. B., Coleman J. L., Anda P., Benach J. L. Glycolytic enzyme operon of Borrelia burgdorferi: characterization and evolutionary implications. Gene. 1997 Apr 1;188(2):221–228. doi: 10.1016/s0378-1119(96)00811-6. [DOI] [PubMed] [Google Scholar]
  8. Goto S., Bono H., Ogata H., Fujibuchi W., Nishioka T., Sato K., Kanehisa M. Organizing and computing metabolic pathway data in terms of binary relations. Pac Symp Biocomput. 1997:175–186. [PubMed] [Google Scholar]
  9. Hazell S. L., Mendz G. L. How Helicobacter pylori works: an overview of the metabolism of Helicobacter pylori. Helicobacter. 1997 Mar;2(1):1–12. doi: 10.1111/j.1523-5378.1997.tb00050.x. [DOI] [PubMed] [Google Scholar]
  10. Holländer R. Energy metabolism of some representatives of the Haemophilus group. Antonie Van Leeuwenhoek. 1976;42(4):429–444. doi: 10.1007/BF00410174. [DOI] [PubMed] [Google Scholar]
  11. Hsieh P. C., Shenoy B. C., Samols D., Phillips N. F. Cloning, expression, and characterization of polyphosphate glucokinase from Mycobacterium tuberculosis. J Biol Chem. 1996 Mar 1;271(9):4909–4915. doi: 10.1074/jbc.271.9.4909. [DOI] [PubMed] [Google Scholar]
  12. Hughes N. J., Clayton C. L., Chalk P. A., Kelly D. J. Helicobacter pylori porCDAB and oorDABC genes encode distinct pyruvate:flavodoxin and 2-oxoglutarate:acceptor oxidoreductases which mediate electron transport to NADP. J Bacteriol. 1998 Mar;180(5):1119–1128. doi: 10.1128/jb.180.5.1119-1128.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Huynen M., Dandekar T., Bork P. Differential genome analysis applied to the species-specific features of Helicobacter pylori. FEBS Lett. 1998 Apr 10;426(1):1–5. doi: 10.1016/s0014-5793(98)00276-2. [DOI] [PubMed] [Google Scholar]
  14. Kengen S. W., Tuininga J. E., de Bok F. A., Stams A. J., de Vos W. M. Purification and characterization of a novel ADP-dependent glucokinase from the hyperthermophilic archaeon Pyrococcus furiosus. J Biol Chem. 1995 Dec 22;270(51):30453–30457. doi: 10.1074/jbc.270.51.30453. [DOI] [PubMed] [Google Scholar]
  15. Koonin E. V., Tatusov R. L., Galperin M. Y. Beyond complete genomes: from sequence to structure and function. Curr Opin Struct Biol. 1998 Jun;8(3):355–363. doi: 10.1016/s0959-440x(98)80070-5. [DOI] [PubMed] [Google Scholar]
  16. Krishnan G., Altekar W. An unusual class I (Schiff base) fructose-1,6-bisphosphate aldolase from the halophilic archaebacterium Haloarcula vallismortis. Eur J Biochem. 1991 Jan 30;195(2):343–350. doi: 10.1111/j.1432-1033.1991.tb15712.x. [DOI] [PubMed] [Google Scholar]
  17. Macfadyen L. P., Dorocicz I. R., Reizer J., Saier M. H., Jr, Redfield R. J. Regulation of competence development and sugar utilization in Haemophilus influenzae Rd by a phosphoenolpyruvate:fructose phosphotransferase system. Mol Microbiol. 1996 Sep;21(5):941–952. doi: 10.1046/j.1365-2958.1996.441420.x. [DOI] [PubMed] [Google Scholar]
  18. Meléndez-Hevia E., Waddell T. G., Heinrich R., Montero F. Theoretical approaches to the evolutionary optimization of glycolysis--chemical analysis. Eur J Biochem. 1997 Mar 1;244(2):527–543. doi: 10.1111/j.1432-1033.1997.t01-1-00527.x. [DOI] [PubMed] [Google Scholar]
  19. Moulder J. W. The relation of the psittacosis group (Chlamydiae) to bacteria and viruses. Annu Rev Microbiol. 1966;20:107–130. doi: 10.1146/annurev.mi.20.100166.000543. [DOI] [PubMed] [Google Scholar]
  20. O'Brien W. E., Bowien S., Wood H. G. Isolation and characterization of a pyrophosphate-dependent phosphofructokinase from Propionibacterium shermanii. J Biol Chem. 1975 Nov 25;250(22):8690–8695. [PubMed] [Google Scholar]
  21. Ojcius D. M., Degani H., Mispelter J., Dautry-Varsat A. Enhancement of ATP levels and glucose metabolism during an infection by Chlamydia. NMR studies of living cells. J Biol Chem. 1998 Mar 20;273(12):7052–7058. doi: 10.1074/jbc.273.12.7052. [DOI] [PubMed] [Google Scholar]
  22. Pandolfi P. P., Sonati F., Rivi R., Mason P., Grosveld F., Luzzatto L. Targeted disruption of the housekeeping gene encoding glucose 6-phosphate dehydrogenase (G6PD): G6PD is dispensable for pentose synthesis but essential for defense against oxidative stress. EMBO J. 1995 Nov 1;14(21):5209–5215. doi: 10.1002/j.1460-2075.1995.tb00205.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Pfeiffer T., Sánchez-Valdenebro I., Nuño J. C., Montero F., Schuster S. METATOOL: for studying metabolic networks. Bioinformatics. 1999 Mar;15(3):251–257. doi: 10.1093/bioinformatics/15.3.251. [DOI] [PubMed] [Google Scholar]
  24. Plumbridge J., Vimr E. Convergent pathways for utilization of the amino sugars N-acetylglucosamine, N-acetylmannosamine, and N-acetylneuraminic acid by Escherichia coli. J Bacteriol. 1999 Jan;181(1):47–54. doi: 10.1128/jb.181.1.47-54.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Podestá F. E., Plaxton W. C. Plant cytosolic pyruvate kinase: a kinetic study. Biochim Biophys Acta. 1992 Nov 20;1160(2):213–220. doi: 10.1016/0167-4838(92)90010-b. [DOI] [PubMed] [Google Scholar]
  26. Pollack J. D., Williams M. V., McElhaney R. N. The comparative metabolism of the mollicutes (Mycoplasmas): the utility for taxonomic classification and the relationship of putative gene annotation and phylogeny to enzymatic function in the smallest free-living cells. Crit Rev Microbiol. 1997;23(4):269–354. doi: 10.3109/10408419709115140. [DOI] [PubMed] [Google Scholar]
  27. Porras O., Caugant D. A., Lagergård T., Svanborg-Edén C. Application of multilocus enzyme gel electrophoresis to Haemophilus influenzae. Infect Immun. 1986 Jul;53(1):71–78. doi: 10.1128/iai.53.1.71-78.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Romano A. H., Conway T. Evolution of carbohydrate metabolic pathways. Res Microbiol. 1996 Jul-Sep;147(6-7):448–455. doi: 10.1016/0923-2508(96)83998-2. [DOI] [PubMed] [Google Scholar]
  29. Schmid R., Bernhardt J., Antelmann H., Völker A., Mach H., Völker U., Hecker M. Identification of vegetative proteins for a two-dimensional protein index of Bacillus subtilis. Microbiology. 1997 Mar;143(Pt 3):991–998. doi: 10.1099/00221287-143-3-991. [DOI] [PubMed] [Google Scholar]
  30. Schuster S., Dandekar T., Fell D. A. Detection of elementary flux modes in biochemical networks: a promising tool for pathway analysis and metabolic engineering. Trends Biotechnol. 1999 Feb;17(2):53–60. doi: 10.1016/s0167-7799(98)01290-6. [DOI] [PubMed] [Google Scholar]
  31. Selkov E., Maltsev N., Olsen G. J., Overbeek R., Whitman W. B. A reconstruction of the metabolism of Methanococcus jannaschii from sequence data. Gene. 1997 Sep 15;197(1-2):GC11–GC26. doi: 10.1016/s0378-1119(97)00307-7. [DOI] [PubMed] [Google Scholar]
  32. Shieh J. S., Whitman W. B. Pathway of acetate assimilation in autotrophic and heterotrophic methanococci. J Bacteriol. 1987 Nov;169(11):5327–5329. doi: 10.1128/jb.169.11.5327-5329.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Skarlatos P., Dahl M. K. The glucose kinase of Bacillus subtilis. J Bacteriol. 1998 Jun;180(12):3222–3226. doi: 10.1128/jb.180.12.3222-3226.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Stanton T. B. Glucose metabolism and NADH recycling by Treponema hyodysenteriae, the agent of swine dysentery. Appl Environ Microbiol. 1989 Sep;55(9):2365–2371. doi: 10.1128/aem.55.9.2365-2371.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Tatusov R. L., Koonin E. V., Lipman D. J. A genomic perspective on protein families. Science. 1997 Oct 24;278(5338):631–637. doi: 10.1126/science.278.5338.631. [DOI] [PubMed] [Google Scholar]
  36. Tatusov R. L., Mushegian A. R., Bork P., Brown N. P., Hayes W. S., Borodovsky M., Rudd K. E., Koonin E. V. Metabolism and evolution of Haemophilus influenzae deduced from a whole-genome comparison with Escherichia coli. Curr Biol. 1996 Mar 1;6(3):279–291. doi: 10.1016/s0960-9822(02)00478-5. [DOI] [PubMed] [Google Scholar]
  37. Thomson G. J., Howlett G. J., Ashcroft A. E., Berry A. The dhnA gene of Escherichia coli encodes a class I fructose bisphosphate aldolase. Biochem J. 1998 Apr 15;331(Pt 2):437–445. doi: 10.1042/bj3310437. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Tomb J. F., White O., Kerlavage A. R., Clayton R. A., Sutton G. G., Fleischmann R. D., Ketchum K. A., Klenk H. P., Gill S., Dougherty B. A. The complete genome sequence of the gastric pathogen Helicobacter pylori. Nature. 1997 Aug 7;388(6642):539–547. doi: 10.1038/41483. [DOI] [PubMed] [Google Scholar]
  39. Valverde F., Losada M., Serrano A. Functional complementation of an Escherichia coli gap mutant supports an amphibolic role for NAD(P)-dependent glyceraldehyde-3-phosphate dehydrogenase of Synechocystis sp. strain PCC 6803. J Bacteriol. 1997 Jul;179(14):4513–4522. doi: 10.1128/jb.179.14.4513-4522.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Vettakkorumakankav N., Danson M. J., Hough D. W., Stevenson K. J., Davison M., Young J. Dihydrolipoamide dehydrogenase from the halophilic archaebacterium Haloferax volcanii: characterization and N-terminal sequence. Biochem Cell Biol. 1992 Jan;70(1):70–75. doi: 10.1139/o92-010. [DOI] [PubMed] [Google Scholar]
  41. Yu J. P., Ladapo J., Whitman W. B. Pathway of glycogen metabolism in Methanococcus maripaludis. J Bacteriol. 1994 Jan;176(2):325–332. doi: 10.1128/jb.176.2.325-332.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. van der Oost J., Schut G., Kengen S. W., Hagen W. R., Thomm M., de Vos W. M. The ferredoxin-dependent conversion of glyceraldehyde-3-phosphate in the hyperthermophilic archaeon Pyrococcus furiosus represents a novel site of glycolytic regulation. J Biol Chem. 1998 Oct 23;273(43):28149–28154. doi: 10.1074/jbc.273.43.28149. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES