Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1999 Oct 1;343(Pt 1):135–138.

alpha3beta3gamma complex of F1-ATPase from thermophilic Bacillus PS3 can maintain steady-state ATP hydrolysis activity depending on the number of non-catalytic sites.

T Amano 1, T Matsui 1, E Muneyuki 1, H Noji 1, K Hara 1, M Yoshida 1, T Hisabori 1
PMCID: PMC1220533  PMID: 10493921

Abstract

Homogeneous preparations of alpha(3)beta(3)gamma complexes with one, two or three non-competent non-catalytic site(s) were performed as described [Amano, Hisabori, Muneyuki, and Yoshida (1996) J. Biol. Chem. 271, 18128-18133] and their properties were compared with those of the wild-type complex. The ATPase activity of the complex with three non-competent non-catalytic sites decayed rapidly to an inactivated state, as reported previously [Matsui, Muneyuki, Honda, Allison, Dou, and Yoshida (1997) J. Biol. Chem. 272, 8215-8221]. In contrast, the complex with one or two non-competent non-catalytic sites displayed a substantial steady-state phase activity depending on the number of non-competent non-catalytic sites in the complex. This result indicates that one competent non-catalytic site can maintain the continuous catalytic turnover of the enzyme and can potentially relieve all three catalytic sites from inhibition by MgADP(-). Furthermore, the results suggest that the interaction between three non-catalytic sites might not be as strong as that between catalytic sites, which are all strictly required for a continuous catalytic turnover.

Full Text

The Full Text of this article is available as a PDF (122.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abrahams J. P., Leslie A. G., Lutter R., Walker J. E. Structure at 2.8 A resolution of F1-ATPase from bovine heart mitochondria. Nature. 1994 Aug 25;370(6491):621–628. doi: 10.1038/370621a0. [DOI] [PubMed] [Google Scholar]
  2. Amano T., Hisabori T., Muneyuki E., Yoshida M. Catalytic activities of alpha3beta3gamma complexes of F1-ATPase with 1, 2, or 3 incompetent catalytic sites. J Biol Chem. 1996 Jul 26;271(30):18128–18133. doi: 10.1074/jbc.271.30.18128. [DOI] [PubMed] [Google Scholar]
  3. Bald D., Amano T., Muneyuki E., Pitard B., Rigaud J. L., Kruip J., Hisabori T., Yoshida M., Shibata M. ATP synthesis by F0F1-ATP synthase independent of noncatalytic nucleotide binding sites and insensitive to azide inhibition. J Biol Chem. 1998 Jan 9;273(2):865–870. doi: 10.1074/jbc.273.2.865. [DOI] [PubMed] [Google Scholar]
  4. Boyer P. D. The ATP synthase--a splendid molecular machine. Annu Rev Biochem. 1997;66:717–749. doi: 10.1146/annurev.biochem.66.1.717. [DOI] [PubMed] [Google Scholar]
  5. Boyer P. D. The binding change mechanism for ATP synthase--some probabilities and possibilities. Biochim Biophys Acta. 1993 Jan 8;1140(3):215–250. doi: 10.1016/0005-2728(93)90063-l. [DOI] [PubMed] [Google Scholar]
  6. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  7. Bullough D. A., Brown E. L., Saario J. D., Allison W. S. On the location and function of the noncatalytic sites on the bovine heart mitochondrial F1-ATPase. J Biol Chem. 1988 Oct 5;263(28):14053–14060. [PubMed] [Google Scholar]
  8. Duncan T. M., Bulygin V. V., Zhou Y., Hutcheon M. L., Cross R. L. Rotation of subunits during catalysis by Escherichia coli F1-ATPase. Proc Natl Acad Sci U S A. 1995 Nov 21;92(24):10964–10968. doi: 10.1073/pnas.92.24.10964. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Futai M., Noumi T., Maeda M. ATP synthase (H+-ATPase): results by combined biochemical and molecular biological approaches. Annu Rev Biochem. 1989;58:111–136. doi: 10.1146/annurev.bi.58.070189.000551. [DOI] [PubMed] [Google Scholar]
  10. Jault J. M., Allison W. S. Slow binding of ATP to noncatalytic nucleotide binding sites which accelerates catalysis is responsible for apparent negative cooperativity exhibited by the bovine mitochondrial F1-ATPase. J Biol Chem. 1993 Jan 25;268(3):1558–1566. [PubMed] [Google Scholar]
  11. Jault J. M., Matsui T., Jault F. M., Kaibara C., Muneyuki E., Yoshida M., Kagawa Y., Allison W. S. The alpha 3 beta 3 gamma complex of the F1-ATPase from thermophilic Bacillus PS3 containing the alpha D261N substitution fails to dissociate inhibitory MgADP from a catalytic site when ATP binds to noncatalytic sites. Biochemistry. 1995 Dec 19;34(50):16412–16418. doi: 10.1021/bi00050a023. [DOI] [PubMed] [Google Scholar]
  12. Kaibara C., Matsui T., Hisabori T., Yoshida M. Structural asymmetry of F1-ATPase caused by the gamma subunit generates a high affinity nucleotide binding site. J Biol Chem. 1996 Feb 2;271(5):2433–2438. doi: 10.1074/jbc.271.5.2433. [DOI] [PubMed] [Google Scholar]
  13. Kunkel T. A., Roberts J. D., Zakour R. A. Rapid and efficient site-specific mutagenesis without phenotypic selection. Methods Enzymol. 1987;154:367–382. doi: 10.1016/0076-6879(87)54085-x. [DOI] [PubMed] [Google Scholar]
  14. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  15. Matsui T., Muneyuki E., Honda M., Allison W. S., Dou C., Yoshida M. Catalytic activity of the alpha3beta3gamma complex of F1-ATPase without noncatalytic nucleotide binding site. J Biol Chem. 1997 Mar 28;272(13):8215–8221. doi: 10.1074/jbc.272.13.8215. [DOI] [PubMed] [Google Scholar]
  16. Matsui T., Yoshida M. Expression of the wild-type and the Cys-/Trp-less alpha 3 beta 3 gamma complex of thermophilic F1-ATPase in Escherichia coli. Biochim Biophys Acta. 1995 Sep 12;1231(2):139–146. doi: 10.1016/0005-2728(95)00070-y. [DOI] [PubMed] [Google Scholar]
  17. Noji H., Yasuda R., Yoshida M., Kinosita K., Jr Direct observation of the rotation of F1-ATPase. Nature. 1997 Mar 20;386(6622):299–302. doi: 10.1038/386299a0. [DOI] [PubMed] [Google Scholar]
  18. Paik S. R., Jault J. M., Allison W. S. Inhibition and inactivation of the F1 adenosinetriphosphatase from Bacillus PS3 by dequalinium and activation of the enzyme by lauryl dimethylamine oxide. Biochemistry. 1994 Jan 11;33(1):126–133. doi: 10.1021/bi00167a016. [DOI] [PubMed] [Google Scholar]
  19. Rao R., Senior A. E. The properties of hybrid F1-ATPase enzymes suggest that a cyclical catalytic mechanism involving three catalytic sites occurs. J Biol Chem. 1987 Dec 25;262(36):17450–17454. [PubMed] [Google Scholar]
  20. Sabbert D., Engelbrecht S., Junge W. Intersubunit rotation in active F-ATPase. Nature. 1996 Jun 13;381(6583):623–625. doi: 10.1038/381623a0. [DOI] [PubMed] [Google Scholar]
  21. Senior A. E. The proton-translocating ATPase of Escherichia coli. Annu Rev Biophys Biophys Chem. 1990;19:7–41. doi: 10.1146/annurev.bb.19.060190.000255. [DOI] [PubMed] [Google Scholar]
  22. Stiggall D. L., Galante Y. M., Hatefi Y. Preparation and properties of complex V. Methods Enzymol. 1979;55:308-15, 819-21. doi: 10.1016/0076-6879(79)55036-8. [DOI] [PubMed] [Google Scholar]
  23. Wise J. G., Duncan T. M., Latchney L. R., Cox D. N., Senior A. E. Properties of F1-ATPase from the uncD412 mutant of Escherichia coli. Biochem J. 1983 Nov 1;215(2):343–350. doi: 10.1042/bj2150343. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Yoshida M., Sone N., Hirata H., Kagawa Y., Ui N. Subunit structure of adenosine triphosphatase. Comparison of the structure in thermophilic bacterium PS3 with those in mitochondria, chloroplasts, and Escherichia coli. J Biol Chem. 1979 Oct 10;254(19):9525–9533. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES