Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1999 Oct 1;343(Pt 1):151–157.

Inhibition of insulin-stimulated phosphorylation of the intracellular domain of phospholemman decreases insulin-dependent GLUT4 translocation in streptolysin-O-permeabilized adipocytes.

O Walaas 1, R S Horn 1, S I Walaas 1
PMCID: PMC1220536  PMID: 10493924

Abstract

A variety of studies indicate that protein kinase C might be involved in the insulin signalling cascade leading to translocation of the insulin-regulated glucose transporter GLUT4 from intracellular pools to the plasma membrane. Phospholemman is a plasma-membrane protein kinase C substrate whose phosphorylation is increased by insulin in intact muscle [Walaas, Czernik, Olstad, Sletten and Walaas (1994) Biochem. J. 304, 635-640]. The present study examined whether the inhibition of phospholemman phosphorylation modulates the effects of insulin on GLUT4 translocation. For this purpose, a synthetic peptide derived from the intracellular domain of phospholemman with the phosphorylatable serine residues replaced with alanine residues was prepared. This peptide was found to decrease the protein kinase C-catalysed phosphorylation of a synthetic phospholemman peptide in vitro. When introduced into streptolysin-O-permeabilized adipocytes, the peptide decreased the effects of insulin on both the phosphorylation of phospholemman and the recruitment of GLUT4 to the plasma membrane. Similarly, the internalization of phospholemman antibodies, which also decreased the protein kinase C-mediated phosphorylation of the synthetic phospholemman peptide in vitro, decreased the effect of insulin on GLUT4 translocation in the adipocytes. The results suggest that phosphorylation of the intracellular domain of phospholemman might be involved in modulating the insulin-induced translocation of GLUT4 to the plasma membrane.

Full Text

The Full Text of this article is available as a PDF (173.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alexander D. R., Graves J. D., Lucas S. C., Cantrell D. A., Crumpton M. J. A method for measuring protein kinase C activity in permeabilized T lymphocytes by using peptide substrates. Evidence for multiple pathways of kinase activation. Biochem J. 1990 Jun 1;268(2):303–308. doi: 10.1042/bj2680303. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bandyopadhyay G., Standaert M. L., Zhao L., Yu B., Avignon A., Galloway L., Karnam P., Moscat J., Farese R. V. Activation of protein kinase C (alpha, beta, and zeta) by insulin in 3T3/L1 cells. Transfection studies suggest a role for PKC-zeta in glucose transport. J Biol Chem. 1997 Jan 24;272(4):2551–2558. doi: 10.1074/jbc.272.4.2551. [DOI] [PubMed] [Google Scholar]
  3. Cheatham B., Vlahos C. J., Cheatham L., Wang L., Blenis J., Kahn C. R. Phosphatidylinositol 3-kinase activation is required for insulin stimulation of pp70 S6 kinase, DNA synthesis, and glucose transporter translocation. Mol Cell Biol. 1994 Jul;14(7):4902–4911. doi: 10.1128/mcb.14.7.4902. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chen L. S., Lo C. F., Numann R., Cuddy M. Characterization of the human and rat phospholemman (PLM) cDNAs and localization of the human PLM gene to chromosome 19q13.1. Genomics. 1997 May 1;41(3):435–443. doi: 10.1006/geno.1997.4665. [DOI] [PubMed] [Google Scholar]
  5. Chiles T. C., O'Brien T. W., Kilberg M. S. Production of monospecific antibodies to a low-abundance hepatic membrane protein using nitrocellulose immobilized protein as antigen. Anal Biochem. 1987 May 15;163(1):136–142. doi: 10.1016/0003-2697(87)90103-5. [DOI] [PubMed] [Google Scholar]
  6. Egan J. J., Saltis J., Wek S. A., Simpson I. A., Londos C. Insulin, oxytocin, and vasopressin stimulate protein kinase C activity in adipocyte plasma membranes. Proc Natl Acad Sci U S A. 1990 Feb;87(3):1052–1056. doi: 10.1073/pnas.87.3.1052. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gibbs E. M., Calderhead D. M., Holman G. D., Gould G. W. Phorbol ester only partially mimics the effects of insulin on glucose transport and glucose-transporter distribution in 3T3-L1 adipocytes. Biochem J. 1991 Apr 1;275(Pt 1):145–150. doi: 10.1042/bj2750145. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Goelz S. E., Nestler E. J., Chehrazi B., Greengard P. Distribution of protein I in mammalian brain as determined by a detergent-based radioimmunoassay. Proc Natl Acad Sci U S A. 1981 Apr;78(4):2130–2134. doi: 10.1073/pnas.78.4.2130. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Graff J. M., Rajan R. R., Randall R. R., Nairn A. C., Blackshear P. J. Protein kinase C substrate and inhibitor characteristics of peptides derived from the myristoylated alanine-rich C kinase substrate (MARCKS) protein phosphorylation site domain. J Biol Chem. 1991 Aug 5;266(22):14390–14398. [PubMed] [Google Scholar]
  10. Guilherme A., Czech M. P. Stimulation of IRS-1-associated phosphatidylinositol 3-kinase and Akt/protein kinase B but not glucose transport by beta1-integrin signaling in rat adipocytes. J Biol Chem. 1998 Dec 11;273(50):33119–33122. doi: 10.1074/jbc.273.50.33119. [DOI] [PubMed] [Google Scholar]
  11. Holman G. D., Kasuga M. From receptor to transporter: insulin signalling to glucose transport. Diabetologia. 1997 Sep;40(9):991–1003. doi: 10.1007/s001250050780. [DOI] [PubMed] [Google Scholar]
  12. Karnieli E., Zarnowski M. J., Hissin P. J., Simpson I. A., Salans L. B., Cushman S. W. Insulin-stimulated translocation of glucose transport systems in the isolated rat adipose cell. Time course, reversal, insulin concentration dependency, and relationship to glucose transport activity. J Biol Chem. 1981 May 25;256(10):4772–4777. [PubMed] [Google Scholar]
  13. Kotani K., Ogawa W., Matsumoto M., Kitamura T., Sakaue H., Hino Y., Miyake K., Sano W., Akimoto K., Ohno S. Requirement of atypical protein kinase clambda for insulin stimulation of glucose uptake but not for Akt activation in 3T3-L1 adipocytes. Mol Cell Biol. 1998 Dec;18(12):6971–6982. doi: 10.1128/mcb.18.12.6971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kowdley G. C., Ackerman S. J., Chen Z., Szabo G., Jones L. R., Moorman J. R. Anion, cation, and zwitterion selectivity of phospholemman channel molecules. Biophys J. 1997 Jan;72(1):141–145. doi: 10.1016/S0006-3495(97)78653-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Laurie S. M., Cain C. C., Lienhard G. E., Castle J. D. The glucose transporter GluT4 and secretory carrier membrane proteins (SCAMPs) colocalize in rat adipocytes and partially segregate during insulin stimulation. J Biol Chem. 1993 Sep 5;268(25):19110–19117. [PubMed] [Google Scholar]
  16. Malide D., Dwyer N. K., Blanchette-Mackie E. J., Cushman S. W. Immunocytochemical evidence that GLUT4 resides in a specialized translocation post-endosomal VAMP2-positive compartment in rat adipose cells in the absence of insulin. J Histochem Cytochem. 1997 Aug;45(8):1083–1096. doi: 10.1177/002215549704500806. [DOI] [PubMed] [Google Scholar]
  17. Martin L. B., Shewan A., Millar C. A., Gould G. W., James D. E. Vesicle-associated membrane protein 2 plays a specific role in the insulin-dependent trafficking of the facilitative glucose transporter GLUT4 in 3T3-L1 adipocytes. J Biol Chem. 1998 Jan 16;273(3):1444–1452. doi: 10.1074/jbc.273.3.1444. [DOI] [PubMed] [Google Scholar]
  18. Matsudaira P. Sequence from picomole quantities of proteins electroblotted onto polyvinylidene difluoride membranes. J Biol Chem. 1987 Jul 25;262(21):10035–10038. [PubMed] [Google Scholar]
  19. Moorman J. R., Ackerman S. J., Kowdley G. C., Griffin M. P., Mounsey J. P., Chen Z., Cala S. E., O'Brian J. J., Szabo G., Jones L. R. Unitary anion currents through phospholemman channel molecules. Nature. 1995 Oct 26;377(6551):737–740. doi: 10.1038/377737a0. [DOI] [PubMed] [Google Scholar]
  20. Mosthaf L., Kellerer M., Mühlhöfer A., Mushack J., Seffer E., Häring H. U. Insulin leads to a parallel translocation of PI-3-kinase and protein kinase C zeta. Exp Clin Endocrinol Diabetes. 1996;104(1):19–24. doi: 10.1055/s-0029-1211417. [DOI] [PubMed] [Google Scholar]
  21. Mühlbacher C., Karnieli E., Schaff P., Obermaier B., Mushack J., Rattenhuber E., Häring H. U. Phorbol esters imitate in rat fat-cells the full effect of insulin on glucose-carrier translocation, but not on 3-O-methylglucose-transport activity. Biochem J. 1988 Feb 1;249(3):865–870. doi: 10.1042/bj2490865. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Nichols R. A., Haycock J. W., Wang J. K., Greengard P. Phorbol ester enhancement of neurotransmitter release from rat brain synaptosomes. J Neurochem. 1987 Feb;48(2):615–621. doi: 10.1111/j.1471-4159.1987.tb04137.x. [DOI] [PubMed] [Google Scholar]
  23. Nishimura H., Simpson I. A. Staurosporine inhibits phorbol 12-myristate 13-acetate- and insulin-stimulated translocation of GLUT1 and GLUT4 glucose transporters in rat adipose cells. Biochem J. 1994 Aug 15;302(Pt 1):271–277. doi: 10.1042/bj3020271. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Okada T., Kawano Y., Sakakibara T., Hazeki O., Ui M. Essential role of phosphatidylinositol 3-kinase in insulin-induced glucose transport and antilipolysis in rat adipocytes. Studies with a selective inhibitor wortmannin. J Biol Chem. 1994 Feb 4;269(5):3568–3573. [PubMed] [Google Scholar]
  25. Olmsted J. B. Affinity purification of antibodies from diazotized paper blots of heterogeneous protein samples. J Biol Chem. 1981 Dec 10;256(23):11955–11957. [PubMed] [Google Scholar]
  26. Palmer C. J., Scott B. T., Jones L. R. Purification and complete sequence determination of the major plasma membrane substrate for cAMP-dependent protein kinase and protein kinase C in myocardium. J Biol Chem. 1991 Jun 15;266(17):11126–11130. [PubMed] [Google Scholar]
  27. Pfeiffer A. Diabetes: many leads to PKC (protein kinase C) Exp Clin Endocrinol Diabetes. 1996;104(1):17–18. doi: 10.1055/s-0029-1211416. [DOI] [PubMed] [Google Scholar]
  28. RODBELL M. METABOLISM OF ISOLATED FAT CELLS. I. EFFECTS OF HORMONES ON GLUCOSE METABOLISM AND LIPOLYSIS. J Biol Chem. 1964 Feb;239:375–380. [PubMed] [Google Scholar]
  29. Robinson L. J., Pang S., Harris D. S., Heuser J., James D. E. Translocation of the glucose transporter (GLUT4) to the cell surface in permeabilized 3T3-L1 adipocytes: effects of ATP insulin, and GTP gamma S and localization of GLUT4 to clathrin lattices. J Cell Biol. 1992 Jun;117(6):1181–1196. doi: 10.1083/jcb.117.6.1181. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Rothman J. E. Mechanisms of intracellular protein transport. Nature. 1994 Nov 3;372(6501):55–63. doi: 10.1038/372055a0. [DOI] [PubMed] [Google Scholar]
  31. Ruderman N. B., Kapeller R., White M. F., Cantley L. C. Activation of phosphatidylinositol 3-kinase by insulin. Proc Natl Acad Sci U S A. 1990 Feb;87(4):1411–1415. doi: 10.1073/pnas.87.4.1411. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Saltis J., Habberfield A. D., Egan J. J., Londos C., Simpson I. A., Cushman S. W. Role of protein kinase C in the regulation of glucose transport in the rat adipose cell. Translocation of glucose transporters without stimulation of glucose transport activity. J Biol Chem. 1991 Jan 5;266(1):261–267. [PubMed] [Google Scholar]
  33. Smith C., Moser T., Xu T., Neher E. Cytosolic Ca2+ acts by two separate pathways to modulate the supply of release-competent vesicles in chromaffin cells. Neuron. 1998 Jun;20(6):1243–1253. doi: 10.1016/s0896-6273(00)80504-8. [DOI] [PubMed] [Google Scholar]
  34. Söllner T., Whiteheart S. W., Brunner M., Erdjument-Bromage H., Geromanos S., Tempst P., Rothman J. E. SNAP receptors implicated in vesicle targeting and fusion. Nature. 1993 Mar 25;362(6418):318–324. doi: 10.1038/362318a0. [DOI] [PubMed] [Google Scholar]
  35. Tanti J. F., Rochet N., Grémeaux T., Van Obberghen E., Le Marchand-Brustel Y. Insulin-stimulated glucose transport in muscle. Evidence for a protein-kinase-C-dependent component which is unaltered in insulin-resistant mice. Biochem J. 1989 Feb 15;258(1):141–146. doi: 10.1042/bj2580141. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Timmers K. I., Clark A. E., Omatsu-Kanbe M., Whiteheart S. W., Bennett M. K., Holman G. D., Cushman S. W. Identification of SNAP receptors in rat adipose cell membrane fractions and in SNARE complexes co-immunoprecipitated with epitope-tagged N-ethylmaleimide-sensitive fusion protein. Biochem J. 1996 Dec 1;320(Pt 2):429–436. doi: 10.1042/bj3200429. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Vogt B., Mushack J., Seffer E., Häring H. U. The translocation of the glucose transporter sub-types GLUT1 and GLUT4 in isolated fat cells is differently regulated by phorbol esters. Biochem J. 1991 May 1;275(Pt 3):597–600. doi: 10.1042/bj2750597. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Walaas O., Horn R. S., Walaas S. I. Insulin and phorbol ester stimulate phosphorylation of a 15,000 dalton membrane protein in rat diaphragm in a similar manner. Biochim Biophys Acta. 1991 Aug 13;1094(1):92–102. doi: 10.1016/0167-4889(91)90030-2. [DOI] [PubMed] [Google Scholar]
  39. Walaas O., Horn R. S., Walaas S. I. The protein kinase C pseudosubstrate peptide (PKC19-36) inhibits insulin-stimulated protein kinase activity and insulin-mediated translocation of the glucose transporter glut 4 in streptolysin-O permeabilized adipocytes. FEBS Lett. 1997 Aug 11;413(1):152–156. doi: 10.1016/s0014-5793(97)00898-3. [DOI] [PubMed] [Google Scholar]
  40. Walaas O., Walaas E., Lystad E., Alertsen A. R., Horn R. S. The effect of insulin and guanosine nucleotides on protein phosphorylations by sarcolemma membranes from skeletal muscle. Mol Cell Endocrinol. 1979 Oct;16(1):45–55. doi: 10.1016/0303-7207(79)90006-6. [DOI] [PubMed] [Google Scholar]
  41. Walaas S. I., Czernik A. J., Olstad O. K., Sletten K., Walaas O. Protein kinase C and cyclic AMP-dependent protein kinase phosphorylate phospholemman, an insulin and adrenaline-regulated membrane phosphoprotein, at specific sites in the carboxy terminal domain. Biochem J. 1994 Dec 1;304(Pt 2):635–640. doi: 10.1042/bj3040635. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Walaas S. I., Horn R. S., Adler A., Albert K. A., Walaas O. Insulin increases membrane protein kinase C activity in rat diaphragm. FEBS Lett. 1987 Aug 17;220(2):311–318. doi: 10.1016/0014-5793(87)80837-2. [DOI] [PubMed] [Google Scholar]
  43. Walaas S. I. Regulation of calcium-dependent [3H]noradrenaline release from rat cerebrocortical synaptosomes by protein kinase C and modulation of the actin cytoskeleton. Neurochem Int. 1999 Mar;34(3):221–233. doi: 10.1016/s0197-0186(99)00007-8. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES