Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1999 Oct 1;343(Pt 1):177–183.

Bacterial lipolytic enzymes: classification and properties.

J L Arpigny 1, K E Jaeger 1
PMCID: PMC1220539  PMID: 10493927

Abstract

Knowledge of bacterial lipolytic enzymes is increasing at a rapid and exciting rate. To obtain an overview of this industrially very important class of enzymes and their characteristics, we have collected and classified the information available from protein and nucleotide databases. Here we propose an updated and extensive classification of bacterial esterases and lipases based mainly on a comparison of their amino acid sequences and some fundamental biological properties. These new insights result in the identification of eight different families with the largest being further divided into six subfamilies. Moreover, the classification enables us to predict (1) important structural features such as residues forming the catalytic site or the presence of disulphide bonds, (2) types of secretion mechanism and requirement for lipase-specific foldases, and (3) the potential relationship to other enzyme families. This work will therefore contribute to a faster identification and to an easier characterization of novel bacterial lipolytic enzymes.

Full Text

The Full Text of this article is available as a PDF (190.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997 Sep 1;25(17):3389–3402. doi: 10.1093/nar/25.17.3389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Anthonsen H. W., Baptista A., Drabløs F., Martel P., Petersen S. B., Sebastião M., Vaz L. Lipases and esterases: a review of their sequences, structure and evolution. Biotechnol Annu Rev. 1995;1:315–371. doi: 10.1016/s1387-2656(08)70056-5. [DOI] [PubMed] [Google Scholar]
  3. Benjamin S., Pandey A. Candida rugosa lipases: molecular biology and versatility in biotechnology. Yeast. 1998 Sep 15;14(12):1069–1087. doi: 10.1002/(SICI)1097-0061(19980915)14:12<1069::AID-YEA303>3.0.CO;2-K. [DOI] [PubMed] [Google Scholar]
  4. Brumlik M. J., Buckley J. T. Identification of the catalytic triad of the lipase/acyltransferase from Aeromonas hydrophila. J Bacteriol. 1996 Apr;178(7):2060–2064. doi: 10.1128/jb.178.7.2060-2064.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Contreras J. A., Karlsson M., Osterlund T., Laurell H., Svensson A., Holm C. Hormone-sensitive lipase is structurally related to acetylcholinesterase, bile salt-stimulated lipase, and several fungal lipases. Building of a three-dimensional model for the catalytic domain of hormone-sensitive lipase. J Biol Chem. 1996 Dec 6;271(49):31426–31430. doi: 10.1074/jbc.271.49.31426. [DOI] [PubMed] [Google Scholar]
  6. Cruz H., Pérez C., Wellington E., Castro C., Servín-González L. Sequence of the Streptomyces albus G lipase-encoding gene reveals the presence of a prokaryotic lipase family. Gene. 1994 Jun 24;144(1):141–142. doi: 10.1016/0378-1119(94)90220-8. [DOI] [PubMed] [Google Scholar]
  7. Cygler M., Schrag J. D. Structure as basis for understanding interfacial properties of lipases. Methods Enzymol. 1997;284:3–27. doi: 10.1016/s0076-6879(97)84003-7. [DOI] [PubMed] [Google Scholar]
  8. Depiereux E., Baudoux G., Briffeuil P., Reginster I., De Bolle X., Vinals C., Feytmans E. Match-Box_server: a multiple sequence alignment tool placing emphasis on reliability. Comput Appl Biosci. 1997 Jun;13(3):249–256. doi: 10.1093/bioinformatics/13.3.249. [DOI] [PubMed] [Google Scholar]
  9. Derewenda Z. S. Structure and function of lipases. Adv Protein Chem. 1994;45:1–52. doi: 10.1016/s0065-3233(08)60637-3. [DOI] [PubMed] [Google Scholar]
  10. Drabløs F., Petersen S. B. Identification of conserved residues in family of esterase and lipase sequences. Methods Enzymol. 1997;284:28–61. doi: 10.1016/s0076-6879(97)84004-9. [DOI] [PubMed] [Google Scholar]
  11. Duong F., Soscia C., Lazdunski A., Murgier M. The Pseudomonas fluorescens lipase has a C-terminal secretion signal and is secreted by a three-component bacterial ABC-exporter system. Mol Microbiol. 1994 Mar;11(6):1117–1126. doi: 10.1111/j.1365-2958.1994.tb00388.x. [DOI] [PubMed] [Google Scholar]
  12. Feller G., Thiry M., Arpigny J. L., Gerday C. Cloning and expression in Escherichia coli of three lipase-encoding genes from the psychrotrophic antarctic strain Moraxella TA144. Gene. 1991 Jun 15;102(1):111–115. doi: 10.1016/0378-1119(91)90548-p. [DOI] [PubMed] [Google Scholar]
  13. Galleni M., Lindberg F., Normark S., Cole S., Honore N., Joris B., Frere J. M. Sequence and comparative analysis of three Enterobacter cloacae ampC beta-lactamase genes and their products. Biochem J. 1988 Mar 15;250(3):753–760. doi: 10.1042/bj2500753. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Gilbert E. J. Pseudomonas lipases: biochemical properties and molecular cloning. Enzyme Microb Technol. 1993 Aug;15(8):634–645. doi: 10.1016/0141-0229(93)90062-7. [DOI] [PubMed] [Google Scholar]
  15. Götz F., Verheij H. M., Rosenstein R. Staphylococcal lipases: molecular characterisation, secretion, and processing. Chem Phys Lipids. 1998 Jun;93(1-2):15–25. doi: 10.1016/s0009-3084(98)00025-5. [DOI] [PubMed] [Google Scholar]
  16. Hemilä H., Koivula T. T., Palva I. Hormone-sensitive lipase is closely related to several bacterial proteins, and distantly related to acetylcholinesterase and lipoprotein lipase: identification of a superfamily of esterases and lipases. Biochim Biophys Acta. 1994 Jan 3;1210(2):249–253. doi: 10.1016/0005-2760(94)90129-5. [DOI] [PubMed] [Google Scholar]
  17. Henderson I. R., Navarro-Garcia F., Nataro J. P. The great escape: structure and function of the autotransporter proteins. Trends Microbiol. 1998 Sep;6(9):370–378. doi: 10.1016/s0966-842x(98)01318-3. [DOI] [PubMed] [Google Scholar]
  18. Ho Y. S., Swenson L., Derewenda U., Serre L., Wei Y., Dauter Z., Hattori M., Adachi T., Aoki J., Arai H. Brain acetylhydrolase that inactivates platelet-activating factor is a G-protein-like trimer. Nature. 1997 Jan 2;385(6611):89–93. doi: 10.1038/385089a0. [DOI] [PubMed] [Google Scholar]
  19. Hong K. H., Jang W. H., Choi K. D., Yoo O. J. Characterization of Pseudomonas fluorescens carboxylesterase: cloning and expression of the esterase gene in Escherichia coli. Agric Biol Chem. 1991 Nov;55(11):2839–2845. [PubMed] [Google Scholar]
  20. Jaeger K. E., Ransac S., Dijkstra B. W., Colson C., van Heuvel M., Misset O. Bacterial lipases. FEMS Microbiol Rev. 1994 Sep;15(1):29–63. doi: 10.1111/j.1574-6976.1994.tb00121.x. [DOI] [PubMed] [Google Scholar]
  21. Jaeger K. E., Reetz M. T. Microbial lipases form versatile tools for biotechnology. Trends Biotechnol. 1998 Sep;16(9):396–403. doi: 10.1016/s0167-7799(98)01195-0. [DOI] [PubMed] [Google Scholar]
  22. Kim H. K., Park S. Y., Lee J. K., Oh T. K. Gene cloning and characterization of thermostable lipase from Bacillus stearothermophilus L1. Biosci Biotechnol Biochem. 1998 Jan;62(1):66–71. doi: 10.1271/bbb.62.66. [DOI] [PubMed] [Google Scholar]
  23. Kim K. K., Song H. K., Shin D. H., Hwang K. Y., Choe S., Yoo O. J., Suh S. W. Crystal structure of carboxylesterase from Pseudomonas fluorescens, an alpha/beta hydrolase with broad substrate specificity. Structure. 1997 Dec 15;5(12):1571–1584. doi: 10.1016/s0969-2126(97)00306-7. [DOI] [PubMed] [Google Scholar]
  24. Kim K. K., Song H. K., Shin D. H., Hwang K. Y., Suh S. W. The crystal structure of a triacylglycerol lipase from Pseudomonas cepacia reveals a highly open conformation in the absence of a bound inhibitor. Structure. 1997 Feb 15;5(2):173–185. doi: 10.1016/s0969-2126(97)00177-9. [DOI] [PubMed] [Google Scholar]
  25. Kim Y. S., Lee H. B., Choi K. D., Park S., Yoo O. J. Cloning of Pseudomonas fluorescens carboxylesterase gene and characterization of its product expressed in Escherichia coli. Biosci Biotechnol Biochem. 1994 Jan;58(1):111–116. doi: 10.1271/bbb.58.111. [DOI] [PubMed] [Google Scholar]
  26. Lang D., Hofmann B., Haalck L., Hecht H. J., Spener F., Schmid R. D., Schomburg D. Crystal structure of a bacterial lipase from Chromobacterium viscosum ATCC 6918 refined at 1.6 angstroms resolution. J Mol Biol. 1996 Jun 21;259(4):704–717. doi: 10.1006/jmbi.1996.0352. [DOI] [PubMed] [Google Scholar]
  27. Langin D., Laurell H., Holst L. S., Belfrage P., Holm C. Gene organization and primary structure of human hormone-sensitive lipase: possible significance of a sequence homology with a lipase of Moraxella TA144, an antarctic bacterium. Proc Natl Acad Sci U S A. 1993 Jun 1;90(11):4897–4901. doi: 10.1073/pnas.90.11.4897. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Li X., Tetling S., Winkler U. K., Jaeger K. E., Benedik M. J. Gene cloning, sequence analysis, purification, and secretion by Escherichia coli of an extracellular lipase from Serratia marcescens. Appl Environ Microbiol. 1995 Jul;61(7):2674–2680. doi: 10.1128/aem.61.7.2674-2680.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Lobkovsky E., Moews P. C., Liu H., Zhao H., Frere J. M., Knox J. R. Evolution of an enzyme activity: crystallographic structure at 2-A resolution of cephalosporinase from the ampC gene of Enterobacter cloacae P99 and comparison with a class A penicillinase. Proc Natl Acad Sci U S A. 1993 Dec 1;90(23):11257–11261. doi: 10.1073/pnas.90.23.11257. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Loveless B. J., Saier M. H., Jr A novel family of channel-forming, autotransporting, bacterial virulence factors. Mol Membr Biol. 1997 Jul-Sep;14(3):113–123. doi: 10.3109/09687689709048171. [DOI] [PubMed] [Google Scholar]
  31. Misawa E., Chan Kwo Chion C. K., Archer I. V., Woodland M. P., Zhou N. Y., Carter S. F., Widdowson D. A., Leak D. J. Characterisation of a catabolic epoxide hydrolase from a Corynebacterium sp. Eur J Biochem. 1998 Apr 1;253(1):173–183. doi: 10.1046/j.1432-1327.1998.2530173.x. [DOI] [PubMed] [Google Scholar]
  32. Miskin J. E., Farrell A. M., Cunliffe W. J., Holland K. T. Propionibacterium acnes, a resident of lipid-rich human skin, produces a 33 kDa extracellular lipase encoded by gehA. Microbiology. 1997 May;143(Pt 5):1745–1755. doi: 10.1099/00221287-143-5-1745. [DOI] [PubMed] [Google Scholar]
  33. Nishizawa M., Shimizu M., Ohkawa H., Kanaoka M. Stereoselective production of (+)-trans-chrysanthemic acid by a microbial esterase: cloning, nucleotide sequence, and overexpression of the esterase gene of Arthrobacter globiformis in Escherichia coli. Appl Environ Microbiol. 1995 Sep;61(9):3208–3215. doi: 10.1128/aem.61.9.3208-3215.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Noble M. E., Cleasby A., Johnson L. N., Egmond M. R., Frenken L. G. The crystal structure of triacylglycerol lipase from Pseudomonas glumae reveals a partially redundant catalytic aspartate. FEBS Lett. 1993 Sep 27;331(1-2):123–128. doi: 10.1016/0014-5793(93)80310-q. [DOI] [PubMed] [Google Scholar]
  35. Ollis D. L., Cheah E., Cygler M., Dijkstra B., Frolow F., Franken S. M., Harel M., Remington S. J., Silman I., Schrag J. The alpha/beta hydrolase fold. Protein Eng. 1992 Apr;5(3):197–211. doi: 10.1093/protein/5.3.197. [DOI] [PubMed] [Google Scholar]
  36. Pandey A., Benjamin S., Soccol C. R., Nigam P., Krieger N., Soccol V. T. The realm of microbial lipases in biotechnology. Biotechnol Appl Biochem. 1999 Apr;29(Pt 2):119–131. [PubMed] [Google Scholar]
  37. Pohlenz H. D., Boidol W., Schüttke I., Streber W. R. Purification and properties of an Arthrobacter oxydans P52 carbamate hydrolase specific for the herbicide phenmedipham and nucleotide sequence of the corresponding gene. J Bacteriol. 1992 Oct;174(20):6600–6607. doi: 10.1128/jb.174.20.6600-6607.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Reetz M. T., Jaeger K. E. Overexpression, immobilization and biotechnological application of Pseudomonas lipases. Chem Phys Lipids. 1998 Jun;93(1-2):3–14. doi: 10.1016/s0009-3084(98)00033-4. [DOI] [PubMed] [Google Scholar]
  39. Rogalska E., Cudrey C., Ferrato F., Verger R. Stereoselective hydrolysis of triglycerides by animal and microbial lipases. Chirality. 1993;5(1):24–30. doi: 10.1002/chir.530050106. [DOI] [PubMed] [Google Scholar]
  40. Salvi S., Trinei M., Lanfaloni L., Pon C. L. Cloning and characterization of the gene encoding an esterase from Spirulina platensis. Mol Gen Genet. 1994 Apr;243(1):124–126. doi: 10.1007/BF00283885. [DOI] [PubMed] [Google Scholar]
  41. Schmidt-Dannert C., Rúa M. L., Atomi H., Schmid R. D. Thermoalkalophilic lipase of Bacillus thermocatenulatus. I. molecular cloning, nucleotide sequence, purification and some properties. Biochim Biophys Acta. 1996 May 31;1301(1-2):105–114. doi: 10.1016/0005-2760(96)00027-6. [DOI] [PubMed] [Google Scholar]
  42. Schrag J. D., Cygler M. Lipases and alpha/beta hydrolase fold. Methods Enzymol. 1997;284:85–107. doi: 10.1016/s0076-6879(97)84006-2. [DOI] [PubMed] [Google Scholar]
  43. Schrag J. D., Li Y., Cygler M., Lang D., Burgdorf T., Hecht H. J., Schmid R., Schomburg D., Rydel T. J., Oliver J. D. The open conformation of a Pseudomonas lipase. Structure. 1997 Feb 15;5(2):187–202. doi: 10.1016/s0969-2126(97)00178-0. [DOI] [PubMed] [Google Scholar]
  44. Simons J. W., van Kampen M. D., Riel S., Götz F., Egmond M. R., Verheij H. M. Cloning, purification and characterisation of the lipase from Staphylococcus epidermidis--comparison of the substrate selectivity with those of other microbial lipases. Eur J Biochem. 1998 May 1;253(3):675–683. doi: 10.1046/j.1432-1327.1998.2530675.x. [DOI] [PubMed] [Google Scholar]
  45. Sommer P., Bormann C., Götz F. Genetic and biochemical characterization of a new extracellular lipase from Streptomyces cinnamomeus. Appl Environ Microbiol. 1997 Sep;63(9):3553–3560. doi: 10.1128/aem.63.9.3553-3560.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Songer J. G. Bacterial phospholipases and their role in virulence. Trends Microbiol. 1997 Apr;5(4):156–161. doi: 10.1016/S0966-842X(97)01005-6. [DOI] [PubMed] [Google Scholar]
  47. Svendsen A., Borch K., Barfoed M., Nielsen T. B., Gormsen E., Patkar S. A. Biochemical properties of cloned lipases from the Pseudomonas family. Biochim Biophys Acta. 1995 Oct 26;1259(1):9–17. doi: 10.1016/0005-2760(95)00117-u. [DOI] [PubMed] [Google Scholar]
  48. Thompson J. D., Higgins D. G., Gibson T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994 Nov 11;22(22):4673–4680. doi: 10.1093/nar/22.22.4673. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Titball R. W. Bacterial phospholipases. Symp Ser Soc Appl Microbiol. 1998;27:127S–137S. [PubMed] [Google Scholar]
  50. Upton C., Buckley J. T. A new family of lipolytic enzymes? Trends Biochem Sci. 1995 May;20(5):178–179. doi: 10.1016/s0968-0004(00)89002-7. [DOI] [PubMed] [Google Scholar]
  51. Verschueren K. H., Seljée F., Rozeboom H. J., Kalk K. H., Dijkstra B. W. Crystallographic analysis of the catalytic mechanism of haloalkane dehalogenase. Nature. 1993 Jun 24;363(6431):693–698. doi: 10.1038/363693a0. [DOI] [PubMed] [Google Scholar]
  52. Wei Y., Schottel J. L., Derewenda U., Swenson L., Patkar S., Derewenda Z. S. A novel variant of the catalytic triad in the Streptomyces scabies esterase. Nat Struct Biol. 1995 Mar;2(3):218–223. doi: 10.1038/nsb0395-218. [DOI] [PubMed] [Google Scholar]
  53. Wei Y., Swenson L., Castro C., Derewenda U., Minor W., Arai H., Aoki J., Inoue K., Servin-Gonzalez L., Derewenda Z. S. Structure of a microbial homologue of mammalian platelet-activating factor acetylhydrolases: Streptomyces exfoliatus lipase at 1.9 A resolution. Structure. 1998 Apr 15;6(4):511–519. doi: 10.1016/s0969-2126(98)00052-5. [DOI] [PubMed] [Google Scholar]
  54. Yabuuchi E., Kosako Y., Oyaizu H., Yano I., Hotta H., Hashimoto Y., Ezaki T., Arakawa M. Proposal of Burkholderia gen. nov. and transfer of seven species of the genus Pseudomonas homology group II to the new genus, with the type species Burkholderia cepacia (Palleroni and Holmes 1981) comb. nov. Microbiol Immunol. 1992;36(12):1251–1275. doi: 10.1111/j.1348-0421.1992.tb02129.x. [DOI] [PubMed] [Google Scholar]
  55. Zock J., Cantwell C., Swartling J., Hodges R., Pohl T., Sutton K., Rosteck P., Jr, McGilvray D., Queener S. The Bacillus subtilis pnbA gene encoding p-nitrobenzyl esterase: cloning, sequence and high-level expression in Escherichia coli. Gene. 1994 Dec 30;151(1-2):37–43. doi: 10.1016/0378-1119(94)90630-0. [DOI] [PubMed] [Google Scholar]
  56. van Oort M. G., Deveer A. M., Dijkman R., Tjeenk M. L., Verheij H. M., de Haas G. H., Wenzig E., Götz F. Purification and substrate specificity of Staphylococcus hyicus lipase. Biochemistry. 1989 Nov 28;28(24):9278–9285. doi: 10.1021/bi00450a007. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES