Abstract
Hypolipidaemic fatty acid derivatives and polyunsaturated fatty acids decrease concentrations of plasma triacylglycerol by mechanisms that are not fully understood. Because poor susceptibility to beta- and/or omega-oxidation is apparently a determinant of the peroxisome proliferating and hypolipidaemic capacity of fatty acids and derivatives, the relative importance of activation of the peroxisome-proliferator-activated receptor alpha (PPARalpha), fatty acid oxidation and triacylglycerol synthesis were examined. We have compared the effects of differentially beta-oxidizable fatty acids on these parameters in primary cultures of rat hepatocytes. Tetradecylthioacetic acid (TTA), 2-methyleicosapentaenoic acid and 3-thia-octadecatetraenoic acid, which are non-beta-oxidizable fatty acid derivatives, were potent activators of a glucocorticoid receptor (GR)-PPARalpha chimaera. This activation was paradoxically reflected in an substantially increased oxidation of [1-(14)C]palmitic acid and/or oleic acid. The incorporation of [1-(14)C]palmitic acid and/or oleic acid into cell-associated and secreted triacylglycerol was decreased by 15-20% and 30% respectively with these non-beta-oxidizable fatty acid derivatives. The CoA ester of TTA inhibited the esterification of 1, 2-diacylglycerol in rat liver microsomes. Both eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) activated GR-PPARalpha. EPA increased the oxidation of [1-(14)C]palmitic acid but DHA had no effect. The CoA ester of EPA inhibited the esterification of 1, 2-diacylglycerol, whereas DHA-CoA had no effect. The ratio between synthesized triacylglycerol and diacylglycerol was lower in hepatocytes cultured with EPA in the medium compared with DHA or oleic acid, indicating a decreased conversion of diacylglycerol to triacylglycerol. Indeed, the incorporation of [1-(14)C]oleic acid into secreted triacylglycerol was decreased by 20% in the presence of EPA. In conclusion, a decreased availability of fatty acids for triacylglycerol synthesis by increased mitochondrial beta-oxidation and decreased triacylglycerol formation caused by inhibition of diacylglycerol acyltransferase might explain the hypolipidaemic effect of TTA and EPA.
Full Text
The Full Text of this article is available as a PDF (161.5 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Asiedu D. K., Skorve J., Willumsen N., Demoz A., Berge R. K. Early effects on mitochondrial and peroxisomal beta-oxidation by the hypolipidemic 3-thia-fatty acids in rat livers. Biochim Biophys Acta. 1993 Feb 10;1166(1):73–76. doi: 10.1016/0005-2760(93)90285-h. [DOI] [PubMed] [Google Scholar]
- Asiedu D. K., al-Shurbaji A., Rustan A. C., Björkhem I., Berglund L., Berge R. K. Hepatic fatty acid metabolism as a determinant of plasma and liver triacylglycerol levels. Studies on tetradecylthioacetic and tetradecylthiopropionic acids. Eur J Biochem. 1995 Feb 1;227(3):715–722. doi: 10.1111/j.1432-1033.1995.tb20193.x. [DOI] [PubMed] [Google Scholar]
- Berge R. K., Aarsland A., Kryvi H., Bremer J., Aarsaether N. Alkylthioacetic acid (3-thia fatty acids)--a new group of non-beta-oxidizable, peroxisome-inducing fatty acid analogues. I. A study on the structural requirements for proliferation of peroxisomes and mitochondria in rat liver. Biochim Biophys Acta. 1989 Aug 22;1004(3):345–356. doi: 10.1016/0005-2760(89)90083-0. [DOI] [PubMed] [Google Scholar]
- Berge R. K., Hvattum E. Impact of cytochrome P450 system on lipoprotein metabolism. Effect of abnormal fatty acids (3-thia fatty acids). Pharmacol Ther. 1994;61(3):345–383. doi: 10.1016/0163-7258(94)90016-7. [DOI] [PubMed] [Google Scholar]
- Berry M. N., Friend D. S. High-yield preparation of isolated rat liver parenchymal cells: a biochemical and fine structural study. J Cell Biol. 1969 Dec;43(3):506–520. doi: 10.1083/jcb.43.3.506. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bremer J., Bjerve K. S., Borrebaek B., Christiansen R. The glycerophosphateacyltransferases and their function in the metabolism of fatty acids. Mol Cell Biochem. 1976 Aug 30;12(2):113–125. doi: 10.1007/BF01731557. [DOI] [PubMed] [Google Scholar]
- Brindley D. N. Intracellular translocation of phosphatidate phosphohydrolase and its possible role in the control of glycerolipid synthesis. Prog Lipid Res. 1984;23(3):115–133. doi: 10.1016/0163-7827(84)90001-8. [DOI] [PubMed] [Google Scholar]
- Chiodi P., Maccari F., Ramacci M. T. Tissue lipid accumulation by L-aminocarnitine, an inhibitor of carnitine-palmitoyltransferase-2. Studies in intact rats and isolated mitochondria. Biochim Biophys Acta. 1992 Jul 9;1127(1):81–86. doi: 10.1016/0005-2760(92)90204-9. [DOI] [PubMed] [Google Scholar]
- Christiansen E. N., Davis E. J. The effects of coenzyme A and carnitine on steady-state ATP/ADP ratios and the rate of long-chain free fatty acid oxidation in liver mitochondria. Biochim Biophys Acta. 1978 Apr 11;502(1):17–28. doi: 10.1016/0005-2728(78)90127-5. [DOI] [PubMed] [Google Scholar]
- Coleman R., Bell R. M. Triacylglycerol synthesis in isolated fat cells. Studies on the microsomal diacylglycerol acyltransferase activity using ethanol-dispersed diacylglycerols. J Biol Chem. 1976 Aug 10;251(15):4537–4543. [PubMed] [Google Scholar]
- Davis R. A., Boogaerts J. R. Intrahepatic assembly of very low density lipoproteins. Effect of fatty acids on triacylglycerol and apolipoprotein synthesis. J Biol Chem. 1982 Sep 25;257(18):10908–10913. [PubMed] [Google Scholar]
- FOLCH J., LEES M., SLOANE STANLEY G. H. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 1957 May;226(1):497–509. [PubMed] [Google Scholar]
- Frøyland L., Madsen L., Vaagenes H., Totland G. K., Auwerx J., Kryvi H., Staels B., Berge R. K. Mitochondrion is the principal target for nutritional and pharmacological control of triglyceride metabolism. J Lipid Res. 1997 Sep;38(9):1851–1858. [PubMed] [Google Scholar]
- Gibbons G. F., Bartlett S. M., Sparks C. E., Sparks J. D. Extracellular fatty acids are not utilized directly for the synthesis of very-low-density lipoprotein in primary cultures of rat hepatocytes. Biochem J. 1992 Nov 1;287(Pt 3):749–753. doi: 10.1042/bj2870749. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Göttlicher M., Demoz A., Svensson D., Tollet P., Berge R. K., Gustafsson J. A. Structural and metabolic requirements for activators of the peroxisome proliferator-activated receptor. Biochem Pharmacol. 1993 Dec 14;46(12):2177–2184. doi: 10.1016/0006-2952(93)90607-x. [DOI] [PubMed] [Google Scholar]
- Göttlicher M., Widmark E., Li Q., Gustafsson J. A. Fatty acids activate a chimera of the clofibric acid-activated receptor and the glucocorticoid receptor. Proc Natl Acad Sci U S A. 1992 May 15;89(10):4653–4657. doi: 10.1073/pnas.89.10.4653. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Haagsman H. P., Van Golde L. M. Synthesis and secretion of very low density lipoproteins by isolated rat hepatocytes in suspension: role of diacylglycerol acyltransferase. Arch Biochem Biophys. 1981 May;208(2):395–402. doi: 10.1016/0003-9861(81)90524-5. [DOI] [PubMed] [Google Scholar]
- Haagsman H. P., de Haas C. G., Geelen M. J., van Golde L. M. Regulation of triacylglycerol synthesis in the liver. Modulation of diacylglycerol acyltransferase activity in vitro. J Biol Chem. 1982 Sep 25;257(18):10593–10598. [PubMed] [Google Scholar]
- Kawaguchi A., Tsubotani S., Seyama Y., Yamakawa T., Osumi T., Hashimoto T., Kikuchi T., Ando M., Okuda S. Stereochemistry of dehydrogenation catalyzed by Acyl-CoA oxidase. J Biochem. 1980 Nov;88(5):1481–1486. doi: 10.1093/oxfordjournals.jbchem.a133118. [DOI] [PubMed] [Google Scholar]
- Mannaerts G. P., Debeer L. J., Thomas J., De Schepper P. J. Mitochondrial and peroxisomal fatty acid oxidation in liver homogenates and isolated hepatocytes from control and clofibrate-treated rats. J Biol Chem. 1979 Jun 10;254(11):4585–4595. [PubMed] [Google Scholar]
- Mavis R. D., Bell R. M., Vagelos P. R. Effect of phospholipase C hydrolysis of membrane phospholipids on membranous enzymes. J Biol Chem. 1972 May 10;247(9):2835–2841. [PubMed] [Google Scholar]
- Peters J. M., Hennuyer N., Staels B., Fruchart J. C., Fievet C., Gonzalez F. J., Auwerx J. Alterations in lipoprotein metabolism in peroxisome proliferator-activated receptor alpha-deficient mice. J Biol Chem. 1997 Oct 24;272(43):27307–27312. doi: 10.1074/jbc.272.43.27307. [DOI] [PubMed] [Google Scholar]
- Rustan A. C., Christiansen E. N., Drevon C. A. Serum lipids, hepatic glycerolipid metabolism and peroxisomal fatty acid oxidation in rats fed omega-3 and omega-6 fatty acids. Biochem J. 1992 Apr 15;283(Pt 2):333–339. doi: 10.1042/bj2830333. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rustan A. C., Nossen J. O., Christiansen E. N., Drevon C. A. Eicosapentaenoic acid reduces hepatic synthesis and secretion of triacylglycerol by decreasing the activity of acyl-coenzyme A:1,2-diacylglycerol acyltransferase. J Lipid Res. 1988 Nov;29(11):1417–1426. [PubMed] [Google Scholar]
- Schoonjans K., Staels B., Auwerx J. The peroxisome proliferator activated receptors (PPARS) and their effects on lipid metabolism and adipocyte differentiation. Biochim Biophys Acta. 1996 Jul 26;1302(2):93–109. doi: 10.1016/0005-2760(96)00066-5. [DOI] [PubMed] [Google Scholar]
- Seglen P. O. Preparation of rat liver cells. 3. Enzymatic requirements for tissue dispersion. Exp Cell Res. 1973 Dec;82(2):391–398. doi: 10.1016/0014-4827(73)90357-1. [DOI] [PubMed] [Google Scholar]
- Singh H., Beckman K., Poulos A. Peroxisomal beta-oxidation of branched chain fatty acids in rat liver. Evidence that carnitine palmitoyltransferase I prevents transport of branched chain fatty acids into mitochondria. J Biol Chem. 1994 Apr 1;269(13):9514–9520. [PubMed] [Google Scholar]
- Skorve J., al-Shurbaji A., Asiedu D., Björkhem I., Berglund L., Berge R. K. On the mechanism of the hypolipidemic effect of sulfur-substituted hexadecanedioic acid (3-thiadicarboxylic acid) in normolipidemic rats. J Lipid Res. 1993 Jul;34(7):1177–1185. [PubMed] [Google Scholar]
- Skrede S., Bremer J., Berge R. K., Rustan A. C. Stimulation of fatty acid oxidation by a 3-thia fatty acid reduces triacylglycerol secretion in cultured rat hepatocytes. J Lipid Res. 1994 Aug;35(8):1395–1404. [PubMed] [Google Scholar]
- Soutar A. Does dietary fat influence plasma lipoprotein structure? Nature. 1978 May 4;273(5657):11–12. doi: 10.1038/273011a0. [DOI] [PubMed] [Google Scholar]
- Spydevold O., Bremer J. Induction of peroxisomal beta-oxidation in 7800 C1 Morris hepatoma cells in steady state by fatty acids and fatty acid analogues. Biochim Biophys Acta. 1989 May 15;1003(1):72–79. doi: 10.1016/0005-2760(89)90101-x. [DOI] [PubMed] [Google Scholar]
- Willumsen N., Hexeberg S., Skorve J., Lundquist M., Berge R. K. Docosahexaenoic acid shows no triglyceride-lowering effects but increases the peroxisomal fatty acid oxidation in liver of rats. J Lipid Res. 1993 Jan;34(1):13–22. [PubMed] [Google Scholar]
- Willumsen N., Skorve J., Hexeberg S., Rustan A. C., Berge R. K. The hypotriglyceridemic effect of eicosapentaenoic acid in rats is reflected in increased mitochondrial fatty acid oxidation followed by diminished lipogenesis. Lipids. 1993 Aug;28(8):683–690. doi: 10.1007/BF02535987. [DOI] [PubMed] [Google Scholar]
- Willumsen N., Vaagenes H., Holmsen H., Berge R. K. On the effect of 2-deuterium- and 2-methyl-eicosapentaenoic acid derivatives on triglycerides, peroxisomal beta-oxidation and platelet aggregation in rats. Biochim Biophys Acta. 1998 Mar 2;1369(2):193–203. doi: 10.1016/s0005-2736(97)00211-3. [DOI] [PubMed] [Google Scholar]
- Willumsen N., Vaagenes H., Lie O., Rustan A. C., Berge R. K. Eicosapentaenoic acid, but not docosahexaenoic acid, increases mitochondrial fatty acid oxidation and upregulates 2,4-dienoyl-CoA reductase gene expression in rats. Lipids. 1996 Jun;31(6):579–592. doi: 10.1007/BF02523828. [DOI] [PubMed] [Google Scholar]
- Willumsen N., Vaagenes H., Rustan A. C., Grav H., Lundquist M., Skattebøl L., Songstad J., Berge R. K. Enhanced hepatic fatty acid oxidation and upregulated carnitine palmitoyltransferase II gene expression by methyl 3-thiaoctadeca-6,9,12,15-tetraenoate in rats. J Lipid Mediat Cell Signal. 1997 Nov;17(2):115–134. doi: 10.1016/s0929-7855(97)00024-2. [DOI] [PubMed] [Google Scholar]