Abstract
A collection of clones, isolated from a Piromyces equi cDNA expression library by immunoscreening with antibodies raised against affinity purified multienzyme fungal cellulase-hemicellulase complex, included one which expressed cinnamoyl ester hydrolase activity. The P. equi cinnamoyl ester hydrolase gene (estA) comprised an open reading frame of 1608 nt encoding a protein (EstA) of 536 amino acids and 55540 Da. EstA was modular in structure and comprised three distinct domains. The N-terminal domain was closely similar to a highly conserved non-catalytic 40-residue docking domain which is prevalent in cellulases and hemicellulases from three species of anaerobic fungi and binds to a putative scaffolding protein during assembly of the fungal cellulase complex. The second domain was also not required for esterase activity and appeared to be an atypically large linker comprising multiple tandem repeats of a 13-residue motif. The C-terminal 270 residues of EstA contained an esterase catalytic domain that exhibited overall homology with a small family of esterases, including acetylxylan esterase D (XYLD) from Pseudomonas fluorescens subsp. cellulosa and acetylxylan esterase from Aspergillus niger. This region also contained several smaller blocks of residues that displayed homology with domains tentatively identified as containing the essential catalytic residues of a larger group of serine hydrolases. A truncated variant of EstA, comprising the catalytic domain alone (EstA'), was expressed in Escherichia coli as a thioredoxin fusion protein and was purified to homogeneity. EstA' was active against synthetic and plant cell-wall-derived substrates, showed a marked preference for cleaving 1-->5 ester linkages between ferulic acid and arabinose in feruloylated arabino-xylo-oligosaccharides and was inhibited by the serine-specific protease inhibitor aminoethylbenzene-sulphonylfluoride. EstA' acted synergistically with xylanase to release more than 60% of the esterified ferulic acid from the arabinoxylan component of plant cell walls. Western analysis confirmed that EstA is produced by P. equi and is a component of the aggregated multienzyme cellulase-hemicellulase complex. Hybrid proteins, harbouring one, two or three iterations of the conserved 40-residue fungal docking domain fused to the reporter protein glutathione S-transferase, were produced. Western blot analysis of immobilized P. equi cellulase-hemicellulase complex demonstrated that each of the hybrid proteins bound to a 97 kDa polypeptide in the extracellular complex.
Full Text
The Full Text of this article is available as a PDF (284.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ali B. R., Zhou L., Graves F. M., Freedman R. B., Black G. W., Gilbert H. J., Hazelwood G. P. Cellulases and hemicellulases of the anaerobic fungus Piromyces constitute a multiprotein cellulose-binding complex and are encoded by multigene families. FEMS Microbiol Lett. 1995 Jan 1;125(1):15–21. doi: 10.1111/j.1574-6968.1995.tb07329.x. [DOI] [PubMed] [Google Scholar]
- Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. Basic local alignment search tool. J Mol Biol. 1990 Oct 5;215(3):403–410. doi: 10.1016/S0022-2836(05)80360-2. [DOI] [PubMed] [Google Scholar]
- Black G. W., Hazlewood G. P., Xue G. P., Orpin C. G., Gilbert H. J. Xylanase B from Neocallimastix patriciarum contains a non-catalytic 455-residue linker sequence comprised of 57 repeats of an octapeptide. Biochem J. 1994 Apr 15;299(Pt 2):381–387. doi: 10.1042/bj2990381. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Borneman W. S., Ljungdahl L. G., Hartley R. D., Akin D. E. Isolation and characterization of p-coumaroyl esterase from the anaerobic fungus Neocallimastix strain MC-2. Appl Environ Microbiol. 1991 Aug;57(8):2337–2344. doi: 10.1128/aem.57.8.2337-2344.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Borneman W. S., Ljungdahl L. G., Hartley R. D., Akin D. E. Purification and partial characterization of two feruloyl esterases from the anaerobic fungus Neocallimastix strain MC-2. Appl Environ Microbiol. 1992 Nov;58(11):3762–3766. doi: 10.1128/aem.58.11.3762-3766.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Christov L. P., Prior B. A. Esterases of xylan-degrading microorganisms: production, properties, and significance. Enzyme Microb Technol. 1993 Jun;15(6):460–475. doi: 10.1016/0141-0229(93)90078-g. [DOI] [PubMed] [Google Scholar]
- Dalrymple B. P., Cybinski D. H., Layton I., McSweeney C. S., Xue G. P., Swadling Y. J., Lowry J. B. Three Neocallimastix patriciarum esterases associated with the degradation of complex polysaccharides are members of a new family of hydrolases. Microbiology. 1997 Aug;143(Pt 8):2605–2614. doi: 10.1099/00221287-143-8-2605. [DOI] [PubMed] [Google Scholar]
- Dalrymple B. P., Swadling Y., Cybinski D. H., Xue G. P. Cloning of a gene encoding cinnamoyl ester hydrolase from the ruminal bacterium Butyrivibrio fibrisolvens E14 by a novel method. FEMS Microbiol Lett. 1996 Oct 1;143(2-3):115–120. doi: 10.1111/j.1574-6968.1996.tb08469.x. [DOI] [PubMed] [Google Scholar]
- Dalrymple B. P., Swadling Y. Expression of a Butyrivibrio fibrisolvens E14 gene (cinB) encoding an enzyme with cinnamoyl ester hydrolase activity is negatively regulated by the product of an adjacent gene (cinR). Microbiology. 1997 Apr;143(Pt 4):1203–1210. doi: 10.1099/00221287-143-4-1203. [DOI] [PubMed] [Google Scholar]
- Denman S., Xue G. P., Patel B. Characterization of a Neocallimastix patriciarum cellulase cDNA (celA) homologous to Trichoderma reesei cellobiohydrolase II. Appl Environ Microbiol. 1996 Jun;62(6):1889–1896. doi: 10.1128/aem.62.6.1889-1896.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Egaña L., Gutiérrez R., Caputo V., Peirano A., Steiner J., Eyzaguirre J. Purification and characterization of two acetyl xylan esterases from Penicillium purpurogenum. Biotechnol Appl Biochem. 1996 Aug;24(Pt 1):33–39. [PubMed] [Google Scholar]
- Fanutti C., Ponyi T., Black G. W., Hazlewood G. P., Gilbert H. J. The conserved noncatalytic 40-residue sequence in cellulases and hemicellulases from anaerobic fungi functions as a protein docking domain. J Biol Chem. 1995 Dec 8;270(49):29314–29322. doi: 10.1074/jbc.270.49.29314. [DOI] [PubMed] [Google Scholar]
- Ferreira L. M., Wood T. M., Williamson G., Faulds C., Hazlewood G. P., Black G. W., Gilbert H. J. A modular esterase from Pseudomonas fluorescens subsp. cellulosa contains a non-catalytic cellulose-binding domain. Biochem J. 1993 Sep 1;294(Pt 2):349–355. doi: 10.1042/bj2940349. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fry S. C. Phenolic components of the primary cell wall. Feruloylated disaccharides of D-galactose and L-arabinose from spinach polysaccharide. Biochem J. 1982 May 1;203(2):493–504. doi: 10.1042/bj2030493. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gilbert H. J., Hazlewood G. P., Laurie J. I., Orpin C. G., Xue G. P. Homologous catalytic domains in a rumen fungal xylanase: evidence for gene duplication and prokaryotic origin. Mol Microbiol. 1992 Aug;6(15):2065–2072. doi: 10.1111/j.1365-2958.1992.tb01379.x. [DOI] [PubMed] [Google Scholar]
- Gilkes N. R., Henrissat B., Kilburn D. G., Miller R. C., Jr, Warren R. A. Domains in microbial beta-1, 4-glycanases: sequence conservation, function, and enzyme families. Microbiol Rev. 1991 Jun;55(2):303–315. doi: 10.1128/mr.55.2.303-315.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hespell R. B., O'Bryan-Shah P. J. Esterase activities in Butyrivibrio fibrisolvens strains. Appl Environ Microbiol. 1988 Aug;54(8):1917–1922. doi: 10.1128/aem.54.8.1917-1922.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ishii T. Feruloyl oligosaccharides from cell walls of suspension-cultured spinach cells and sugar beet pulp. Plant Cell Physiol. 1994 Jun;35(4):701–704. doi: 10.1093/oxfordjournals.pcp.a078646. [DOI] [PubMed] [Google Scholar]
- Ishii T., Hiroi T. Linkage of phenolic acids to cell-wall polysaccharides of bamboo shoot. Carbohydr Res. 1990 Oct 10;206(2):297–310. doi: 10.1016/0008-6215(90)80069-f. [DOI] [PubMed] [Google Scholar]
- Jaeger K. E., Ransac S., Dijkstra B. W., Colson C., van Heuvel M., Misset O. Bacterial lipases. FEMS Microbiol Rev. 1994 Sep;15(1):29–63. doi: 10.1111/j.1574-6976.1994.tb00121.x. [DOI] [PubMed] [Google Scholar]
- Jaeger K. E., Ransac S., Koch H. B., Ferrato F., Dijkstra B. W. Topological characterization and modeling of the 3D structure of lipase from Pseudomonas aeruginosa. FEBS Lett. 1993 Oct 11;332(1-2):143–149. doi: 10.1016/0014-5793(93)80501-k. [DOI] [PubMed] [Google Scholar]
- Jendrossek D., Frisse A., Behrends A., Andermann M., Kratzin H. D., Stanislawski T., Schlegel H. G. Biochemical and molecular characterization of the Pseudomonas lemoignei polyhydroxyalkanoate depolymerase system. J Bacteriol. 1995 Feb;177(3):596–607. doi: 10.1128/jb.177.3.596-607.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kemp P., Lander D. J., Orpin C. G. The lipids of the rumen fungus Piromonas communis. J Gen Microbiol. 1984 Jan;130(1):27–37. doi: 10.1099/00221287-130-1-27. [DOI] [PubMed] [Google Scholar]
- Kroon P. A., Williamson G. Release of ferulic acid from sugar-beet pulp by using arabinanase, arabinofuranosidase and an esterase from Aspergillus niger. Biotechnol Appl Biochem. 1996 Jun;23(Pt 3):263–267. [PubMed] [Google Scholar]
- Li X. L., Chen H., Ljungdahl L. G. Monocentric and polycentric anaerobic fungi produce structurally related cellulases and xylanases. Appl Environ Microbiol. 1997 Feb;63(2):628–635. doi: 10.1128/aem.63.2.628-635.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Norrander J., Kempe T., Messing J. Construction of improved M13 vectors using oligodeoxynucleotide-directed mutagenesis. Gene. 1983 Dec;26(1):101–106. doi: 10.1016/0378-1119(83)90040-9. [DOI] [PubMed] [Google Scholar]
- Orpin C. G. Isolation of cellulolytic phycomycete fungi from the caecum of the horse. J Gen Microbiol. 1981 Apr;123(2):287–296. doi: 10.1099/00221287-123-2-287. [DOI] [PubMed] [Google Scholar]
- Ralet M. C., Faulds C. B., Williamson G., Thibault J. F. Degradation of feruloylated oligosaccharides from sugar-beet pulp and wheat bran by ferulic acid esterases from Aspergillus niger. Carbohydr Res. 1994 Oct 17;263(2):257–269. doi: 10.1016/0008-6215(94)00177-4. [DOI] [PubMed] [Google Scholar]
- Saito T., Suzuki K., Yamamoto J., Fukui T., Miwa K., Tomita K., Nakanishi S., Odani S., Suzuki J., Ishikawa K. Cloning, nucleotide sequence, and expression in Escherichia coli of the gene for poly(3-hydroxybutyrate) depolymerase from Alcaligenes faecalis. J Bacteriol. 1989 Jan;171(1):184–189. doi: 10.1128/jb.171.1.184-189.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Saulnier L., Vigouroux J., Thibault J. F. Isolation and partial characterization of feruloylated oligosaccharides from maize bran. Carbohydr Res. 1995 Aug 11;272(2):241–253. doi: 10.1016/0008-6215(95)00053-v. [DOI] [PubMed] [Google Scholar]
- Shinohe T., Nojiri M., Saito T., Stanislawski T., Jendrossek D. Determination of the active sites serine of the poly (3-hydroxybutyrate) depolymerases of Pseudomonas lemoignei (PhaZ5) and of Alcaligenes faecalis. FEMS Microbiol Lett. 1996 Jul 15;141(1):103–109. doi: 10.1111/j.1574-6968.1996.tb08370.x. [DOI] [PubMed] [Google Scholar]
- Teunissen M. J., de Kort G. V., Op den Camp H. J., Huis in 't Veld J. H. Production of cellulolytic and xylanolytic enzymes during growth of the anaerobic fungus Piromyces sp. on different substrates. J Gen Microbiol. 1992 Aug;138(Pt 8):1657–1664. doi: 10.1099/00221287-138-8-1657. [DOI] [PubMed] [Google Scholar]
- Tomme P., Warren R. A., Gilkes N. R. Cellulose hydrolysis by bacteria and fungi. Adv Microb Physiol. 1995;37:1–81. doi: 10.1016/s0065-2911(08)60143-5. [DOI] [PubMed] [Google Scholar]
- Upton C., Buckley J. T. A new family of lipolytic enzymes? Trends Biochem Sci. 1995 May;20(5):178–179. doi: 10.1016/s0968-0004(00)89002-7. [DOI] [PubMed] [Google Scholar]
- Wubah D. A., Akin D. E., Borneman W. S. Biology, fiber-degradation, and enzymology of anaerobic zoosporic fungi. Crit Rev Microbiol. 1993;19(2):99–115. doi: 10.3109/10408419309113525. [DOI] [PubMed] [Google Scholar]
- Zhang J. X., Flint H. J. A bifunctional xylanase encoded by the xynA gene of the rumen cellulolytic bacterium Ruminococcus flavefaciens 17 comprises two dissimilar domains linked by an asparagine/glutamine-rich sequence. Mol Microbiol. 1992 Apr;6(8):1013–1023. doi: 10.1111/j.1365-2958.1992.tb02167.x. [DOI] [PubMed] [Google Scholar]
- Zhou L., Xue G. P., Orpin C. G., Black G. W., Gilbert H. J., Hazlewood G. P. Intronless celB from the anaerobic fungus Neocallimastix patriciarum encodes a modular family A endoglucanase. Biochem J. 1994 Jan 15;297(Pt 2):359–364. doi: 10.1042/bj2970359. [DOI] [PMC free article] [PubMed] [Google Scholar]
- de Vries R. P., Michelsen B., Poulsen C. H., Kroon P. A., van den Heuvel R. H., Faulds C. B., Williamson G., van den Hombergh J. P., Visser J. The faeA genes from Aspergillus niger and Aspergillus tubingensis encode ferulic acid esterases involved in degradation of complex cell wall polysaccharides. Appl Environ Microbiol. 1997 Dec;63(12):4638–4644. doi: 10.1128/aem.63.12.4638-4644.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
