Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1999 Oct 1;343(Pt 1):225–230.

Structure and expression of murine mgcRacGAP: its developmental regulation suggests a role for the Rac/MgcRacGAP signalling pathway in neurogenesis.

C Arar 1, M O Ott 1, A Touré 1, G Gacon 1
PMCID: PMC1220545  PMID: 10493933

Abstract

Rho-family GTPases regulate a wide range of biological functions including cell migration, cell adhesion and cell growth. Recently, results from studies in vivo in Drosophila, mouse and humans have demonstrated the involvement of these GTPases in mechanisms controlling neuronal differentiation and the development of the central nervous system (CNS). However, the signalling pathways underlying these functions and the proteins directly regulating RhoGTPases in developing neurons are poorly defined. Here we report the structure and expression pattern of the murine orthologue of mgcRacGAP, a human gene encoding a RacGTPase partner expressed in male germ cells [Touré, Dorseuil, Morin, Timmons, Jegou, Reibel and Gacon (1998) J. Biol. Chem. 273, 6019-6023]. In contrast with that from humans, murine mgcRacGAP encodes two distinct transcripts. Both are developmentally regulated. A 2.2 kb transcript is strongly expressed in mature testis and is up-regulated with spermatogenesis. A 3 kb RNA is predominant in the embryo and is expressed primarily in the CNS during the neurogenic phase, decreasing after birth. In situ hybridization analysis in embryonic-day 14.5 mouse embryos demonstrates a preferential expression of mgcRacGAP in the proliferative ventricular zone of the cortex. In addition to the expression of mgcRacGAP in male germ cells already reported in humans and suggesting an involvement in spermatogenesis, we characterize an embryonic transcript whose expression is closely correlated with neurogenesis. This result addresses the question of the role of Rac/MgcRacGAP pathway in neuronal proliferation.

Full Text

The Full Text of this article is available as a PDF (258.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Agnel M., Röder L., Vola C., Griffin-Shea R. A Drosophila rotund transcript expressed during spermatogenesis and imaginal disc morphogenesis encodes a protein which is similar to human Rac GTPase-activating (racGAP) proteins. Mol Cell Biol. 1992 Nov;12(11):5111–5122. doi: 10.1128/mcb.12.11.5111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Angevine J. B., Jr, Sidman R. L. Autoradiographic study of cell migration during histogenesis of cerebral cortex in the mouse. Nature. 1961 Nov 25;192:766–768. doi: 10.1038/192766b0. [DOI] [PubMed] [Google Scholar]
  3. Billuart P., Bienvenu T., Ronce N., des Portes V., Vinet M. C., Zemni R., Roest Crollius H., Carrié A., Fauchereau F., Cherry M. Oligophrenin-1 encodes a rhoGAP protein involved in X-linked mental retardation. Nature. 1998 Apr 30;392(6679):923–926. doi: 10.1038/31940. [DOI] [PubMed] [Google Scholar]
  4. Church G. M., Gilbert W. Genomic sequencing. Proc Natl Acad Sci U S A. 1984 Apr;81(7):1991–1995. doi: 10.1073/pnas.81.7.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cobellis G., Missero C., Di Lauro R. Concomitant activation of MEK-1 and Rac-1 increases the proliferative potential of thyroid epithelial cells, without affecting their differentiation. Oncogene. 1998 Oct 22;17(16):2047–2057. doi: 10.1038/sj.onc.1202130. [DOI] [PubMed] [Google Scholar]
  6. Corpet F., Gouzy J., Kahn D. The ProDom database of protein domain families. Nucleic Acids Res. 1998 Jan 1;26(1):323–326. doi: 10.1093/nar/26.1.323. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Curtis D., Lehmann R., Zamore P. D. Translational regulation in development. Cell. 1995 Apr 21;81(2):171–178. doi: 10.1016/0092-8674(95)90325-9. [DOI] [PubMed] [Google Scholar]
  8. D'Adamo P., Menegon A., Lo Nigro C., Grasso M., Gulisano M., Tamanini F., Bienvenu T., Gedeon A. K., Oostra B., Wu S. K. Mutations in GDI1 are responsible for X-linked non-specific mental retardation. Nat Genet. 1998 Jun;19(2):134–139. doi: 10.1038/487. [DOI] [PubMed] [Google Scholar]
  9. Edwalds-Gilbert G., Veraldi K. L., Milcarek C. Alternative poly(A) site selection in complex transcription units: means to an end? Nucleic Acids Res. 1997 Jul 1;25(13):2547–2561. doi: 10.1093/nar/25.13.2547. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gallo G., Letourneau P. C. Axon guidance: GTPases help axons reach their targets. Curr Biol. 1998 Jan 29;8(3):R80–R82. doi: 10.1016/s0960-9822(98)70051-x. [DOI] [PubMed] [Google Scholar]
  11. Gray N. K., Wickens M. Control of translation initiation in animals. Annu Rev Cell Dev Biol. 1998;14:399–458. doi: 10.1146/annurev.cellbio.14.1.399. [DOI] [PubMed] [Google Scholar]
  12. Huttenlocher A., Sandborg R. R., Horwitz A. F. Adhesion in cell migration. Curr Opin Cell Biol. 1995 Oct;7(5):697–706. doi: 10.1016/0955-0674(95)80112-x. [DOI] [PubMed] [Google Scholar]
  13. Jalink K., van Corven E. J., Hengeveld T., Morii N., Narumiya S., Moolenaar W. H. Inhibition of lysophosphatidate- and thrombin-induced neurite retraction and neuronal cell rounding by ADP ribosylation of the small GTP-binding protein Rho. J Cell Biol. 1994 Aug;126(3):801–810. doi: 10.1083/jcb.126.3.801. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Jin Z., Strittmatter S. M. Rac1 mediates collapsin-1-induced growth cone collapse. J Neurosci. 1997 Aug 15;17(16):6256–6263. doi: 10.1523/JNEUROSCI.17-16-06256.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kozma R., Ahmed S., Best A., Lim L. The GTPase-activating protein n-chimaerin cooperates with Rac1 and Cdc42Hs to induce the formation of lamellipodia and filopodia. Mol Cell Biol. 1996 Sep;16(9):5069–5080. doi: 10.1128/mcb.16.9.5069. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Lamoureux P., Altun-Gultekin Z. F., Lin C., Wagner J. A., Heidemann S. R. Rac is required for growth cone function but not neurite assembly. J Cell Sci. 1997 Mar;110(Pt 5):635–641. doi: 10.1242/jcs.110.5.635. [DOI] [PubMed] [Google Scholar]
  17. Luo L., Hensch T. K., Ackerman L., Barbel S., Jan L. Y., Jan Y. N. Differential effects of the Rac GTPase on Purkinje cell axons and dendritic trunks and spines. Nature. 1996 Feb 29;379(6568):837–840. doi: 10.1038/379837a0. [DOI] [PubMed] [Google Scholar]
  18. Luo L., Liao Y. J., Jan L. Y., Jan Y. N. Distinct morphogenetic functions of similar small GTPases: Drosophila Drac1 is involved in axonal outgrowth and myoblast fusion. Genes Dev. 1994 Aug 1;8(15):1787–1802. doi: 10.1101/gad.8.15.1787. [DOI] [PubMed] [Google Scholar]
  19. Lupas A. Coiled coils: new structures and new functions. Trends Biochem Sci. 1996 Oct;21(10):375–382. [PubMed] [Google Scholar]
  20. Lupas A., Van Dyke M., Stock J. Predicting coiled coils from protein sequences. Science. 1991 May 24;252(5009):1162–1164. doi: 10.1126/science.252.5009.1162. [DOI] [PubMed] [Google Scholar]
  21. McConnell S. K., Kaznowski C. E. Cell cycle dependence of laminar determination in developing neocortex. Science. 1991 Oct 11;254(5029):282–285. doi: 10.1126/science.254.5029.282. [DOI] [PubMed] [Google Scholar]
  22. Melzig J., Rein K. H., Schäfer U., Pfister H., Jäckle H., Heisenberg M., Raabe T. A protein related to p21-activated kinase (PAK) that is involved in neurogenesis in the Drosophila adult central nervous system. Curr Biol. 1998 Nov 5;8(22):1223–1226. doi: 10.1016/s0960-9822(07)00514-3. [DOI] [PubMed] [Google Scholar]
  23. Olson M. F., Ashworth A., Hall A. An essential role for Rho, Rac, and Cdc42 GTPases in cell cycle progression through G1. Science. 1995 Sep 1;269(5228):1270–1272. doi: 10.1126/science.7652575. [DOI] [PubMed] [Google Scholar]
  24. Ott M. O., Bober E., Lyons G., Arnold H., Buckingham M. Early expression of the myogenic regulatory gene, myf-5, in precursor cells of skeletal muscle in the mouse embryo. Development. 1991 Apr;111(4):1097–1107. doi: 10.1242/dev.111.4.1097. [DOI] [PubMed] [Google Scholar]
  25. Qiu R. G., Chen J., McCormick F., Symons M. A role for Rho in Ras transformation. Proc Natl Acad Sci U S A. 1995 Dec 5;92(25):11781–11785. doi: 10.1073/pnas.92.25.11781. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Steven R., Kubiseski T. J., Zheng H., Kulkarni S., Mancillas J., Ruiz Morales A., Hogue C. W., Pawson T., Culotti J. UNC-73 activates the Rac GTPase and is required for cell and growth cone migrations in C. elegans. Cell. 1998 Mar 20;92(6):785–795. doi: 10.1016/s0092-8674(00)81406-3. [DOI] [PubMed] [Google Scholar]
  27. Sugihara K., Nakatsuji N., Nakamura K., Nakao K., Hashimoto R., Otani H., Sakagami H., Kondo H., Nozawa S., Aiba A. Rac1 is required for the formation of three germ layers during gastrulation. Oncogene. 1998 Dec 31;17(26):3427–3433. doi: 10.1038/sj.onc.1202595. [DOI] [PubMed] [Google Scholar]
  28. Threadgill R., Bobb K., Ghosh A. Regulation of dendritic growth and remodeling by Rho, Rac, and Cdc42. Neuron. 1997 Sep;19(3):625–634. doi: 10.1016/s0896-6273(00)80376-1. [DOI] [PubMed] [Google Scholar]
  29. Touré A., Dorseuil O., Morin L., Timmons P., Jégou B., Reibel L., Gacon G. MgcRacGAP, a new human GTPase-activating protein for Rac and Cdc42 similar to Drosophila rotundRacGAP gene product, is expressed in male germ cells. J Biol Chem. 1998 Mar 13;273(11):6019–6023. doi: 10.1074/jbc.273.11.6019. [DOI] [PubMed] [Google Scholar]
  30. Van Aelst L., D'Souza-Schorey C. Rho GTPases and signaling networks. Genes Dev. 1997 Sep 15;11(18):2295–2322. doi: 10.1101/gad.11.18.2295. [DOI] [PubMed] [Google Scholar]
  31. Zipkin I. D., Kindt R. M., Kenyon C. J. Role of a new Rho family member in cell migration and axon guidance in C. elegans. Cell. 1997 Sep 5;90(5):883–894. doi: 10.1016/s0092-8674(00)80353-0. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES