Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1999 Oct 1;343(Pt 1):249–255.

Aberrant expression of cAMP-response-element-binding protein ('CREB') induces apoptosis.

K Saeki 1, A Yuo 1, E Suzuki 1, Y Yazaki 1, F Takaku 1
PMCID: PMC1220548  PMID: 10493936

Abstract

We have reported previously that cAMP-response-element-binding protein (CREB) was phosphorylated in a cell-cycle-dependent manner, showing that it was phosphorylated at early S-phase at casein kinase II target sites. To assess the possible involvement of CREB in cell cycle progression, CREB expression vector was transiently transfected into various cells. Unexpectedly we found that transfection with CREB expression vector resulted in an abundance of dead cells. Morphological examination revealed that these cells had undergone apoptosis. The coincidence of CREB overexpression and apoptosis induction at the individual cell level was confirmed by a immunohistochemical study. To confirm that overexpression of CREB was the cause of apoptosis, a dominant-negative mutant of CREB, KCREB, was co-expressed with the wild type. The co-existence of KCREB effectively rescued CREB-mediated apoptosis in a dose-dependent manner, verifying that apoptosis was truly a specific effect of overexpressed CREB and not an artifact of the transfection procedure. Deletion analysis indicates that neither the Q1 transactivation domain, which functions in transcription, nor the kinase-inducible domain, in which a cluster of various kinase targets exists, is necessary; however, the Q2 transactivation domain is required for the induction of apoptosis. A more precise study indicates that the four-residue stretch Glu-Glu-Ala-Ala at the most C-terminal region of the Q2 domain is especially important for the induction of apoptosis. Thus overexpressed CREB induces apoptosis by transmitting certain signals from the C-terminal portion of the Q2 domain. Possible roles of cell-cycle-regulated phosphorylation and also an elevation of the intracellular cAMP level in CREB-induced apoptosis are suggested.

Full Text

The Full Text of this article is available as a PDF (294.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adya N., Zhao L. J., Huang W., Boros I., Giam C. Z. Expansion of CREB's DNA recognition specificity by Tax results from interaction with Ala-Ala-Arg at positions 282-284 near the conserved DNA-binding domain of CREB. Proc Natl Acad Sci U S A. 1994 Jun 7;91(12):5642–5646. doi: 10.1073/pnas.91.12.5642. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Barton K., Muthusamy N., Chanyangam M., Fischer C., Clendenin C., Leiden J. M. Defective thymocyte proliferation and IL-2 production in transgenic mice expressing a dominant-negative form of CREB. Nature. 1996 Jan 4;379(6560):81–85. doi: 10.1038/379081a0. [DOI] [PubMed] [Google Scholar]
  3. Bourtchuladze R., Frenguelli B., Blendy J., Cioffi D., Schutz G., Silva A. J. Deficient long-term memory in mice with a targeted mutation of the cAMP-responsive element-binding protein. Cell. 1994 Oct 7;79(1):59–68. doi: 10.1016/0092-8674(94)90400-6. [DOI] [PubMed] [Google Scholar]
  4. Chen C., Okayama H. High-efficiency transformation of mammalian cells by plasmid DNA. Mol Cell Biol. 1987 Aug;7(8):2745–2752. doi: 10.1128/mcb.7.8.2745. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Dowd D. R., Miesfeld R. L. Evidence that glucocorticoid- and cyclic AMP-induced apoptotic pathways in lymphocytes share distal events. Mol Cell Biol. 1992 Aug;12(8):3600–3608. doi: 10.1128/mcb.12.8.3600. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Fladmark K. E., Gjertsen B. T., Døskeland S. O., Vintermyr O. K. Fas/APO-1(CD95)-induced apoptosis of primary hepatocytes is inhibited by cAMP. Biochem Biophys Res Commun. 1997 Mar 6;232(1):20–25. doi: 10.1006/bbrc.1997.6214. [DOI] [PubMed] [Google Scholar]
  7. Ginty D. D., Kornhauser J. M., Thompson M. A., Bading H., Mayo K. E., Takahashi J. S., Greenberg M. E. Regulation of CREB phosphorylation in the suprachiasmatic nucleus by light and a circadian clock. Science. 1993 Apr 9;260(5105):238–241. doi: 10.1126/science.8097062. [DOI] [PubMed] [Google Scholar]
  8. Gonzalez G. A., Montminy M. R. Cyclic AMP stimulates somatostatin gene transcription by phosphorylation of CREB at serine 133. Cell. 1989 Nov 17;59(4):675–680. doi: 10.1016/0092-8674(89)90013-5. [DOI] [PubMed] [Google Scholar]
  9. Gonzalez G. A., Yamamoto K. K., Fischer W. H., Karr D., Menzel P., Biggs W., 3rd, Vale W. W., Montminy M. R. A cluster of phosphorylation sites on the cyclic AMP-regulated nuclear factor CREB predicted by its sequence. Nature. 1989 Feb 23;337(6209):749–752. doi: 10.1038/337749a0. [DOI] [PubMed] [Google Scholar]
  10. Gurley L. R., Jandacek A. L., Valdez J. G., Sebring R. J., D'Anna J. A., Puck T. T. Br-cAMP induction of apoptosis in synchronized CHO cells. Somat Cell Mol Genet. 1998 May;24(3):173–190. doi: 10.1023/b:scam.0000007120.17128.e0. [DOI] [PubMed] [Google Scholar]
  11. Jean D., Harbison M., McConkey D. J., Ronai Z., Bar-Eli M. CREB and its associated proteins act as survival factors for human melanoma cells. J Biol Chem. 1998 Sep 18;273(38):24884–24890. doi: 10.1074/jbc.273.38.24884. [DOI] [PubMed] [Google Scholar]
  12. Jiang X., Li J., Paskind M., Epstein P. M. Inhibition of calmodulin-dependent phosphodiesterase induces apoptosis in human leukemic cells. Proc Natl Acad Sci U S A. 1996 Oct 1;93(20):11236–11241. doi: 10.1073/pnas.93.20.11236. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kiefer J., Okret S., Jondal M., McConkey D. J. Functional glucocorticoid receptor expression is required for cAMP-mediated apoptosis in a human leukemic T cell line. J Immunol. 1995 Nov 15;155(10):4525–4528. [PubMed] [Google Scholar]
  14. Lee M. R., Liou M. L., Liou M. L., Yang Y. F., Lai M. Z. cAMP analogs prevent activation-induced apoptosis of T cell hybridomas. J Immunol. 1993 Nov 15;151(10):5208–5217. [PubMed] [Google Scholar]
  15. Montminy M. R., Sevarino K. A., Wagner J. A., Mandel G., Goodman R. H. Identification of a cyclic-AMP-responsive element within the rat somatostatin gene. Proc Natl Acad Sci U S A. 1986 Sep;83(18):6682–6686. doi: 10.1073/pnas.83.18.6682. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Nishizawa Y., Saeki K., Hirai H., Yazaki Y., Takaku F., Yuo A. Potent inhibition of cell density-dependent apoptosis and enhancement of survival by dimethyl sulfoxide in human myeloblastic HL-60 cells. J Cell Physiol. 1998 Jan;174(1):135–143. doi: 10.1002/(SICI)1097-4652(199801)174:1<135::AID-JCP15>3.0.CO;2-E. [DOI] [PubMed] [Google Scholar]
  17. Pepperkok R., Lorenz P., Ansorge W., Pyerin W. Casein kinase II is required for transition of G0/G1, early G1, and G1/S phases of the cell cycle. J Biol Chem. 1994 Mar 4;269(9):6986–6991. [PubMed] [Google Scholar]
  18. Pyerin W., Pepperkok R., Ansorge W., Lorenz P. Early cell growth stimulation is inhibited by casein kinase II antisense oligodeoxynucleotides. Ann N Y Acad Sci. 1992 Oct 28;660:295–297. doi: 10.1111/j.1749-6632.1992.tb21091.x. [DOI] [PubMed] [Google Scholar]
  19. Rossi A. G., Cousin J. M., Dransfield I., Lawson M. F., Chilvers E. R., Haslett C. Agents that elevate cAMP inhibit human neutrophil apoptosis. Biochem Biophys Res Commun. 1995 Dec 26;217(3):892–899. doi: 10.1006/bbrc.1995.2855. [DOI] [PubMed] [Google Scholar]
  20. Russo G. L., Vandenberg M. T., Yu I. J., Bae Y. S., Franza B. R., Jr, Marshak D. R. Casein kinase II phosphorylates p34cdc2 kinase in G1 phase of the HeLa cell division cycle. J Biol Chem. 1992 Oct 5;267(28):20317–20325. [PubMed] [Google Scholar]
  21. Saeki K., Yuo A., Kato M., Miyazono K., Yazaki Y., Takaku F. Cell density-dependent apoptosis in HL-60 cells, which is mediated by an unknown soluble factor, is inhibited by transforming growth factor beta1 and overexpression of Bcl-2. J Biol Chem. 1997 Aug 8;272(32):20003–20010. doi: 10.1074/jbc.272.32.20003. [DOI] [PubMed] [Google Scholar]
  22. Saeki K., Yuo A., Takaku F. Cell-cycle-regulated phosphorylation of cAMP response element-binding protein: identification of novel phosphorylation sites. Biochem J. 1999 Feb 15;338(Pt 1):49–54. [PMC free article] [PubMed] [Google Scholar]
  23. Sheng M., Thompson M. A., Greenberg M. E. CREB: a Ca(2+)-regulated transcription factor phosphorylated by calmodulin-dependent kinases. Science. 1991 Jun 7;252(5011):1427–1430. doi: 10.1126/science.1646483. [DOI] [PubMed] [Google Scholar]
  24. Shi L., Nishioka W. K., Th'ng J., Bradbury E. M., Litchfield D. W., Greenberg A. H. Premature p34cdc2 activation required for apoptosis. Science. 1994 Feb 25;263(5150):1143–1145. doi: 10.1126/science.8108732. [DOI] [PubMed] [Google Scholar]
  25. Suzuki T., Fujisawa J. I., Toita M., Yoshida M. The trans-activator tax of human T-cell leukemia virus type 1 (HTLV-1) interacts with cAMP-responsive element (CRE) binding and CRE modulator proteins that bind to the 21-base-pair enhancer of HTLV-1. Proc Natl Acad Sci U S A. 1993 Jan 15;90(2):610–614. doi: 10.1073/pnas.90.2.610. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Suzuki T., Fujisawa J. I., Toita M., Yoshida M. The trans-activator tax of human T-cell leukemia virus type 1 (HTLV-1) interacts with cAMP-responsive element (CRE) binding and CRE modulator proteins that bind to the 21-base-pair enhancer of HTLV-1. Proc Natl Acad Sci U S A. 1993 Jan 15;90(2):610–614. doi: 10.1073/pnas.90.2.610. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Tang Y., Tie F., Boros I., Harrod R., Glover M., Giam C. Z. An extended alpha-helix and specific amino acid residues opposite the DNA-binding surface of the cAMP response element binding protein basic domain are important for human T cell lymphotropic retrovirus type I Tax binding. J Biol Chem. 1998 Oct 16;273(42):27339–27346. doi: 10.1074/jbc.273.42.27339. [DOI] [PubMed] [Google Scholar]
  28. Walton K. M., Rehfuss R. P., Chrivia J. C., Lochner J. E., Goodman R. H. A dominant repressor of cyclic adenosine 3',5'-monophosphate (cAMP)-regulated enhancer-binding protein activity inhibits the cAMP-mediated induction of the somatostatin promoter in vivo. Mol Endocrinol. 1992 Apr;6(4):647–655. doi: 10.1210/mend.6.4.1350057. [DOI] [PubMed] [Google Scholar]
  29. Walton M., Sirimanne E., Williams C., Gluckman P., Dragunow M. The role of the cyclic AMP-responsive element binding protein (CREB) in hypoxic-ischemic brain damage and repair. Brain Res Mol Brain Res. 1996 Dec 31;43(1-2):21–29. doi: 10.1016/s0169-328x(96)00144-1. [DOI] [PubMed] [Google Scholar]
  30. Yamada T., Yamaoka S., Goto T., Nakai M., Tsujimoto Y., Hatanaka M. The human T-cell leukemia virus type I Tax protein induces apoptosis which is blocked by the Bcl-2 protein. J Virol. 1994 May;68(5):3374–3379. doi: 10.1128/jvi.68.5.3374-3379.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Yang Y. M., Dolan L. R., Ronai Z. Expression of dominant negative CREB reduces resistance to radiation of human melanoma cells. Oncogene. 1996 May 16;12(10):2223–2233. [PubMed] [Google Scholar]
  32. Yonish-Rouach E., Grunwald D., Wilder S., Kimchi A., May E., Lawrence J. J., May P., Oren M. p53-mediated cell death: relationship to cell cycle control. Mol Cell Biol. 1993 Mar;13(3):1415–1423. doi: 10.1128/mcb.13.3.1415. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Yoshida K., Imaki J., Matsuda H., Hagiwara M. Light-induced CREB phosphorylation and gene expression in rat retinal cells. J Neurochem. 1995 Oct;65(4):1499–1504. doi: 10.1046/j.1471-4159.1995.65041499.x. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES