Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1999 Oct 15;343(Pt 2):301–305.

Phage display identifies thioredoxin and superoxide dismutase as novel protein kinase C-interacting proteins: thioredoxin inhibits protein kinase C-mediated phosphorylation of histone.

J A Watson 1, M G Rumsby 1, R G Wolowacz 1
PMCID: PMC1220553  PMID: 10510292

Abstract

Using phage display we identify the redox proteins thioredoxin and superoxide dismutase (SOD) as novel protein kinase C (PKC)-interacting proteins. Overlay assays demonstrated that PKC bound to immobilized thioredoxin, providing supporting evidence for the phage display results. Kinase assays demonstrated that SOD and thioredoxin were not direct substrates for PKC but that both proteins blocked autophosphorylation of PKC. Moreover, thioredoxin inhibited PKC-mediated phosphorylation of histone (IC(50) of approx. 20 ng/ml).

Full Text

The Full Text of this article is available as a PDF (115.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Biguet C., Wakasugi N., Mishal Z., Holmgren A., Chouaib S., Tursz T., Wakasugi H. Thioredoxin increases the proliferation of human B-cell lines through a protein kinase C-dependent mechanism. J Biol Chem. 1994 Nov 18;269(46):28865–28870. [PubMed] [Google Scholar]
  2. Buchner K., Lindschau C., Hucho F. Nuclear localization of protein kinase C alpha and its association with nuclear components in neuro-2a neuroblastoma cells. FEBS Lett. 1997 Apr 7;406(1-2):61–65. doi: 10.1016/s0014-5793(97)00226-3. [DOI] [PubMed] [Google Scholar]
  3. Chanez P., Dent G., Yukawa T., Barnes P. J., Chung K. F. Generation of oxygen free radicals from blood eosinophils from asthma patients after stimulation with PAF or phorbol ester. Eur Respir J. 1990 Oct;3(9):1002–1007. [PubMed] [Google Scholar]
  4. Drew L., Groome N., Hallam T. J., Warr J. R., Rumsby M. G. Changes in protein kinase C subspecies protein expression and activity in a series of multidrug-resistant human KB carcinoma cell lines. Oncol Res. 1994;6(9):429–438. [PubMed] [Google Scholar]
  5. Dutil E. M., Toker A., Newton A. C. Regulation of conventional protein kinase C isozymes by phosphoinositide-dependent kinase 1 (PDK-1). Curr Biol. 1998 Dec 17;8(25):1366–1375. doi: 10.1016/s0960-9822(98)00017-7. [DOI] [PubMed] [Google Scholar]
  6. Ferrari D. M., Söling H. D. The protein disulphide-isomerase family: unravelling a string of folds. Biochem J. 1999 Apr 1;339(Pt 1):1–10. [PMC free article] [PubMed] [Google Scholar]
  7. Furuke K., Nakamura H., Hori T., Iwata S., Maekawa N., Inamoto T., Yamaoka Y., Yodoi J. Suppression of adult T cell leukemia-derived factor/human thioredoxin induction by FK506 and cyclosporin A: a new mechanism of immune modulation via redox control. Int Immunol. 1995 Jun;7(6):985–993. doi: 10.1093/intimm/7.6.985. [DOI] [PubMed] [Google Scholar]
  8. Gietz R. D., Triggs-Raine B., Robbins A., Graham K. C., Woods R. A. Identification of proteins that interact with a protein of interest: applications of the yeast two-hybrid system. Mol Cell Biochem. 1997 Jul;172(1-2):67–79. [PubMed] [Google Scholar]
  9. Gopalakrishna R., Chen Z. H., Gundimeda U. Selenocompounds induce a redox modulation of protein kinase C in the cell, compartmentally independent from cytosolic glutathione: its role in inhibition of tumor promotion. Arch Biochem Biophys. 1997 Dec 1;348(1):37–48. doi: 10.1006/abbi.1997.0335. [DOI] [PubMed] [Google Scholar]
  10. Gopalakrishna R., Gundimeda U., Chen Z. H. Cancer-preventive selenocompounds induce a specific redox modification of cysteine-rich regions in Ca(2+)-dependent isoenzymes of protein kinase C. Arch Biochem Biophys. 1997 Dec 1;348(1):25–36. doi: 10.1006/abbi.1997.0334. [DOI] [PubMed] [Google Scholar]
  11. Hirota K., Matsui M., Iwata S., Nishiyama A., Mori K., Yodoi J. AP-1 transcriptional activity is regulated by a direct association between thioredoxin and Ref-1. Proc Natl Acad Sci U S A. 1997 Apr 15;94(8):3633–3638. doi: 10.1073/pnas.94.8.3633. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. House C., Robinson P. J., Kemp B. E. A synthetic peptide analog of the putative substrate-binding motif activates protein kinase C. FEBS Lett. 1989 Jun 5;249(2):243–247. doi: 10.1016/0014-5793(89)80632-5. [DOI] [PubMed] [Google Scholar]
  13. Howie A. F., Arthur J. R., Nicol F., Walker S. W., Beech S. G., Beckett G. J. Identification of a 57-kilodalton selenoprotein in human thyrocytes as thioredoxin reductase and evidence that its expression is regulated through the calcium-phosphoinositol signaling pathway. J Clin Endocrinol Metab. 1998 Jun;83(6):2052–2058. doi: 10.1210/jcem.83.6.4875. [DOI] [PubMed] [Google Scholar]
  14. Hug H., Sarre T. F. Protein kinase C isoenzymes: divergence in signal transduction? Biochem J. 1993 Apr 15;291(Pt 2):329–343. doi: 10.1042/bj2910329. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Littlebury P., Watson J., Williams T., Beale G., Rumsby M. Protein expression of the epsilon subspecies of protein kinase C ceases as Swiss 3T6 fibroblasts increase in cell density even though message for the protein is still present. FEBS Lett. 1997 Jan 6;400(3):304–308. doi: 10.1016/s0014-5793(96)01394-4. [DOI] [PubMed] [Google Scholar]
  16. Liu J. P. Protein kinase C and its substrates. Mol Cell Endocrinol. 1996 Jan 15;116(1):1–29. doi: 10.1016/0303-7207(95)03706-3. [DOI] [PubMed] [Google Scholar]
  17. Niwa Y., Ozaki Y., Kanoh T., Akamatsu H., Kurisaka M. Role of cytokines, tyrosine kinase, and protein kinase C on production of superoxide and induction of scavenging enzymes in human leukocytes. Clin Immunol Immunopathol. 1996 Jun;79(3):303–313. doi: 10.1006/clin.1996.0083. [DOI] [PubMed] [Google Scholar]
  18. Orr J. W., Newton A. C. Requirement for negative charge on "activation loop" of protein kinase C. J Biol Chem. 1994 Nov 4;269(44):27715–27718. [PubMed] [Google Scholar]
  19. Parmley S. F., Smith G. P. Antibody-selectable filamentous fd phage vectors: affinity purification of target genes. Gene. 1988 Dec 20;73(2):305–318. doi: 10.1016/0378-1119(88)90495-7. [DOI] [PubMed] [Google Scholar]
  20. Pongracz J., Lord J. M. Superoxide production in human neutrophils: evidence for signal redundancy and the involvement of more than one PKC isoenzyme class. Biochem Biophys Res Commun. 1998 Jun 29;247(3):624–629. doi: 10.1006/bbrc.1998.8867. [DOI] [PubMed] [Google Scholar]
  21. Smith G. P., Scott J. K. Libraries of peptides and proteins displayed on filamentous phage. Methods Enzymol. 1993;217:228–257. doi: 10.1016/0076-6879(93)17065-d. [DOI] [PubMed] [Google Scholar]
  22. Stabel S., Parker P. J. Protein kinase C. Pharmacol Ther. 1991;51(1):71–95. doi: 10.1016/0163-7258(91)90042-k. [DOI] [PubMed] [Google Scholar]
  23. Szabo A., Stolz L., Granzow R. Surface plasmon resonance and its use in biomolecular interaction analysis (BIA). Curr Opin Struct Biol. 1995 Oct;5(5):699–705. doi: 10.1016/0959-440x(95)80064-6. [DOI] [PubMed] [Google Scholar]
  24. Yasuda I., Kishimoto A., Tanaka S., Tominaga M., Sakurai A., Nishizuka Y. A synthetic peptide substrate for selective assay of protein kinase C. Biochem Biophys Res Commun. 1990 Feb 14;166(3):1220–1227. doi: 10.1016/0006-291x(90)90996-z. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES