Abstract
Confocal laser scanning microscopy and the potentiometric fluorescence probe tetramethylrhodamine ethyl ester were used to measure changes in membrane electrical potential (DeltaPsi(m)) in individual mitochondria after isolation or in the living cell. Recordings averaged over small mitochondrial populations revealed a gradual decline in DeltaPsi(m) caused by the light-induced generation of free radicals. Depolarization was attenuated by dithiothreitol or acidification. In contrast, individual organelles displayed rapid spontaneous depolarizations caused by openings of the mitochondrial permeability transition pore (MTP). Repetitive openings and closings of the pore gave rise to marked fluctuations in DeltaPsi(m) between the fully charged and completely depolarized state. Rapid spontaneous fluctuations in DeltaPsi(m) were observed in mitochondria isolated from rat heart and in mitochondria in living endothelial cells. The loss of DeltaPsi(m) of mitochondria in the living cell coincided with swelling of the organelle and the breakdown of long mitochondrial filaments. In the individual mitochondrion, oxidative stress initially triggered pore openings of shorter duration, before prolonged openings caused the complete dissipation of DeltaPsi(m) and a measurable efflux of larger solutes. Generalizing this scheme, we suggest that under conditions of prolonged oxidative stress and/or cellular Ca(2+) overload, short openings of MTP might serve as an emergency mechanism allowing the partial dissipation of DeltaPsi(m), the fast release of accumulated Ca(2+) ions and the decreased generation of endogenous oxygen radicals. In contrast, loss of matrix metabolites, swelling and other structural damage of the organelle render prolonged openings of the transition pore deleterious to mitochondria and to the cell.
Full Text
The Full Text of this article is available as a PDF (218.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Al-Nasser I., Crompton M. The reversible Ca2+-induced permeabilization of rat liver mitochondria. Biochem J. 1986 Oct 1;239(1):19–29. doi: 10.1042/bj2390019. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Amchenkova A. A., Bakeeva L. E., Chentsov Y. S., Skulachev V. P., Zorov D. B. Coupling membranes as energy-transmitting cables. I. Filamentous mitochondria in fibroblasts and mitochondrial clusters in cardiomyocytes. J Cell Biol. 1988 Aug;107(2):481–495. doi: 10.1083/jcb.107.2.481. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Beatrice M. C., Stiers D. L., Pfeiffer D. R. The role of glutathione in the retention of Ca2+ by liver mitochondria. J Biol Chem. 1984 Jan 25;259(2):1279–1287. [PubMed] [Google Scholar]
- Bereiter-Hahn J., Vöth M. Dynamics of mitochondria in living cells: shape changes, dislocations, fusion, and fission of mitochondria. Microsc Res Tech. 1994 Feb 15;27(3):198–219. doi: 10.1002/jemt.1070270303. [DOI] [PubMed] [Google Scholar]
- Beutner G., Ruck A., Riede B., Welte W., Brdiczka D. Complexes between kinases, mitochondrial porin and adenylate translocator in rat brain resemble the permeability transition pore. FEBS Lett. 1996 Nov 4;396(2-3):189–195. doi: 10.1016/0014-5793(96)01092-7. [DOI] [PubMed] [Google Scholar]
- Broekemeier K. M., Dempsey M. E., Pfeiffer D. R. Cyclosporin A is a potent inhibitor of the inner membrane permeability transition in liver mitochondria. J Biol Chem. 1989 May 15;264(14):7826–7830. [PubMed] [Google Scholar]
- Crompton M., Virji S., Ward J. M. Cyclophilin-D binds strongly to complexes of the voltage-dependent anion channel and the adenine nucleotide translocase to form the permeability transition pore. Eur J Biochem. 1998 Dec 1;258(2):729–735. doi: 10.1046/j.1432-1327.1998.2580729.x. [DOI] [PubMed] [Google Scholar]
- Di Lisa F., Bernardi P. Mitochondrial function as a determinant of recovery or death in cell response to injury. Mol Cell Biochem. 1998 Jul;184(1-2):379–391. [PubMed] [Google Scholar]
- Duncan C. J., Greenaway H. C., Publicover S. J., Rudge M. F., Smith J. L. Experimental production of "septa" and apparent subdivision of muscle mitochondria. J Bioenerg Biomembr. 1980 Apr;12(1-2):13–33. doi: 10.1007/BF00745010. [DOI] [PubMed] [Google Scholar]
- Griffiths E. J., Halestrap A. P. Mitochondrial non-specific pores remain closed during cardiac ischaemia, but open upon reperfusion. Biochem J. 1995 Apr 1;307(Pt 1):93–98. doi: 10.1042/bj3070093. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gross N. J. Control of mitochondrial turnover under the influence of thyroid hormone. J Cell Biol. 1971 Jan;48(1):29–40. doi: 10.1083/jcb.48.1.29. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Haworth R. A., Hunter D. R. The Ca2+-induced membrane transition in mitochondria. II. Nature of the Ca2+ trigger site. Arch Biochem Biophys. 1979 Jul;195(2):460–467. doi: 10.1016/0003-9861(79)90372-2. [DOI] [PubMed] [Google Scholar]
- Hüser J., Rechenmacher C. E., Blatter L. A. Imaging the permeability pore transition in single mitochondria. Biophys J. 1998 Apr;74(4):2129–2137. doi: 10.1016/S0006-3495(98)77920-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ichas F., Jouaville L. S., Mazat J. P. Mitochondria are excitable organelles capable of generating and conveying electrical and calcium signals. Cell. 1997 Jun 27;89(7):1145–1153. doi: 10.1016/s0092-8674(00)80301-3. [DOI] [PubMed] [Google Scholar]
- Kerr P. M., Suleiman M. S., Halestrap A. P. Reversal of permeability transition during recovery of hearts from ischemia and its enhancement by pyruvate. Am J Physiol. 1999 Feb;276(2 Pt 2):H496–H502. doi: 10.1152/ajpheart.1999.276.2.H496. [DOI] [PubMed] [Google Scholar]
- Kowaltowski A. J., Castilho R. F., Vercesi A. E. Opening of the mitochondrial permeability transition pore by uncoupling or inorganic phosphate in the presence of Ca2+ is dependent on mitochondrial-generated reactive oxygen species. FEBS Lett. 1996 Jan 8;378(2):150–152. doi: 10.1016/0014-5793(95)01449-7. [DOI] [PubMed] [Google Scholar]
- Kroemer G., Dallaporta B., Resche-Rigon M. The mitochondrial death/life regulator in apoptosis and necrosis. Annu Rev Physiol. 1998;60:619–642. doi: 10.1146/annurev.physiol.60.1.619. [DOI] [PubMed] [Google Scholar]
- Loew L. M., Tuft R. A., Carrington W., Fay F. S. Imaging in five dimensions: time-dependent membrane potentials in individual mitochondria. Biophys J. 1993 Dec;65(6):2396–2407. doi: 10.1016/S0006-3495(93)81318-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Minamikawa T., Williams D. A., Bowser D. N., Nagley P. Mitochondrial permeability transition and swelling can occur reversibly without inducing cell death in intact human cells. Exp Cell Res. 1999 Jan 10;246(1):26–37. doi: 10.1006/excr.1998.4290. [DOI] [PubMed] [Google Scholar]
- Nicolli A., Petronilli V., Bernardi P. Modulation of the mitochondrial cyclosporin A-sensitive permeability transition pore by matrix pH. Evidence that the pore open-closed probability is regulated by reversible histidine protonation. Biochemistry. 1993 Apr 27;32(16):4461–4465. doi: 10.1021/bi00067a039. [DOI] [PubMed] [Google Scholar]
- Novgorodov S. A., Gudz T. I., Milgrom Y. M., Brierley G. P. The permeability transition in heart mitochondria is regulated synergistically by ADP and cyclosporin A. J Biol Chem. 1992 Aug 15;267(23):16274–16282. [PubMed] [Google Scholar]
- Palmer J. W., Tandler B., Hoppel C. L. Biochemical properties of subsarcolemmal and interfibrillar mitochondria isolated from rat cardiac muscle. J Biol Chem. 1977 Dec 10;252(23):8731–8739. [PubMed] [Google Scholar]
- Petronilli V., Costantini P., Scorrano L., Colonna R., Passamonti S., Bernardi P. The voltage sensor of the mitochondrial permeability transition pore is tuned by the oxidation-reduction state of vicinal thiols. Increase of the gating potential by oxidants and its reversal by reducing agents. J Biol Chem. 1994 Jun 17;269(24):16638–16642. [PubMed] [Google Scholar]
- Petronilli V., Miotto G., Canton M., Brini M., Colonna R., Bernardi P., Di Lisa F. Transient and long-lasting openings of the mitochondrial permeability transition pore can be monitored directly in intact cells by changes in mitochondrial calcein fluorescence. Biophys J. 1999 Feb;76(2):725–734. doi: 10.1016/S0006-3495(99)77239-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Skulachev V. P. Uncoupling: new approaches to an old problem of bioenergetics. Biochim Biophys Acta. 1998 Feb 25;1363(2):100–124. doi: 10.1016/s0005-2728(97)00091-1. [DOI] [PubMed] [Google Scholar]
- Tandler B., Hoppel C. L. Possible division of cardiac mitochondria. Anat Rec. 1972 Jul;173(3):309–323. doi: 10.1002/ar.1091730306. [DOI] [PubMed] [Google Scholar]
- Zoratti M., Szabò I. The mitochondrial permeability transition. Biochim Biophys Acta. 1995 Jul 17;1241(2):139–176. doi: 10.1016/0304-4157(95)00003-a. [DOI] [PubMed] [Google Scholar]