Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1999 Oct 15;343(Pt 2):327–334. doi: 10.1042/0264-6021:3430327

Plant mitochondrial 2-oxoglutarate dehydrogenase complex: purification and characterization in potato.

A H Millar 1, S A Hill 1, C J Leaver 1
PMCID: PMC1220557  PMID: 10510296

Abstract

The 2-oxoglutarate dehydrogenase complex (OGDC) in potato (Solanum tuberosum cv. Romano) tuber mitochondria is largely associated with the membrane fraction of osmotically ruptured organelles, whereas most of the other tricarboxylic acid cycle enzymes are found in the soluble matrix fraction. The purification of OGDC from either membrane or soluble matrix fractions resulted in the increasing dependence of its activity on the addition of dihydrolipoamide dehydrogenase (E3). A 30-fold purification of OGDC to apparent homogeneity and with a specific activity of 4.6 micromol/min per mg of protein in the presence of exogenously added E3 was obtained. SDS/PAGE revealed that the purified complex consisted of three major polypeptides with apparent molecular masses of 48, 50 and 105 kDa. Before the gel-filtration purification step, E3 polypeptides of 57 and 58 kDa were identified by immunoreaction as minor proteins associated with OGDC. The N-terminal sequence of the 57 kDa protein was identical with that previously purified as the E3 component of the pyruvate dehydrogenase complex from potato. The 105 kDa protein was identified as the 2-oxoglutarate dehydrogenase subunit of OGDC by N-terminal sequencing. The N-terminal sequences of the 50 and 48 kDa proteins shared 90-95% identity over 20 residues and were identified by sequence similarity as dihydrolipoamide succinyltransferases (OGDC-E2). The incubation of OGDC with [U-(14)C]2-oxoglutarate resulted in the reversible succinylation of both the 48 and the 50 kDa protein bands. Proteins previously reported as subunits of complex I of the respiratory chain from Vicia faba and Solanum tuberosum are proposed to be OGDC-E2 and the possible basis of this association is discussed.

Full Text

The Full Text of this article is available as a PDF (157.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barrera C. R., Namihira G., Hamilton L., Munk P., Eley M. H., Linn T. C., Reed L. J. -Keto acid dehydrogenase complexes. XVI. Studies on the subunit structure of the pyruvate dehydrogenase complexes from bovine kidney and heart. Arch Biochem Biophys. 1972 Feb;148(2):343–358. doi: 10.1016/0003-9861(72)90152-x. [DOI] [PubMed] [Google Scholar]
  2. Bourguignon J., Macherel D., Neuburger M., Douce R. Isolation, characterization, and sequence analysis of a cDNA clone encoding L-protein, the dihydrolipoamide dehydrogenase component of the glycine cleavage system from pea-leaf mitochondria. Eur J Biochem. 1992 Mar 1;204(2):865–873. doi: 10.1111/j.1432-1033.1992.tb16706.x. [DOI] [PubMed] [Google Scholar]
  3. Bourguignon J., Merand V., Rawsthorne S., Forest E., Douce R. Glycine decarboxylase and pyruvate dehydrogenase complexes share the same dihydrolipoamide dehydrogenase in pea leaf mitochondria: evidence from mass spectrometry and primary-structure analysis. Biochem J. 1996 Jan 1;313(Pt 1):229–234. doi: 10.1042/bj3130229. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bowman E. J., Ikuma H., Stein H. J. Citric Acid cycle activity in mitochondria isolated from mung bean hypocotyls. Plant Physiol. 1976 Sep;58(3):426–432. doi: 10.1104/pp.58.3.426. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  6. Clarkson G. H., Lindsay J. G. Immunology, biosynthesis and in vivo assembly of the branched-chain 2-oxoacid dehydrogenase complex from bovine kidney. Eur J Biochem. 1991 Feb 26;196(1):95–100. doi: 10.1111/j.1432-1033.1991.tb15790.x. [DOI] [PubMed] [Google Scholar]
  7. Conner M., Krell T., Lindsay J. G. Identification and purification of a distinct dihydrolipoamide dehydrogenase from pea chloroplasts. Planta. 1996;200(2):195–202. doi: 10.1007/BF00208309. [DOI] [PubMed] [Google Scholar]
  8. Craig D. W., Wedding R. T. Regulation of the 2-oxoglutarate dehydrogenase lipoate succinyltransferase complex from cauliflower by nucleotide. Pre-steady state kinetics and physical studies. J Biol Chem. 1980 Jun 25;255(12):5769–5775. [PubMed] [Google Scholar]
  9. Craig D. W., Wedding R. T. Regulation of the 2-oxoglutarate dehydrogenase lipoate succinyltransferase complex from cauliflower by nucleotide. Steady state kinetic studies. J Biol Chem. 1980 Jun 25;255(12):5763–5768. [PubMed] [Google Scholar]
  10. Day D. A., Neuburger M., Douce R. Activation of NAD-linked malic enzyme in intact plant mitochondria by exogenous coenzyme A. Arch Biochem Biophys. 1984 May 15;231(1):233–242. doi: 10.1016/0003-9861(84)90383-7. [DOI] [PubMed] [Google Scholar]
  11. Dry I. B., Wiskich J. T. 2-Oxoglutarate dehydrogenase and pyruvate dehydrogenase activities in plant mitochondria: interaction via a common coenzyme a pool. Arch Biochem Biophys. 1987 Aug 15;257(1):92–99. doi: 10.1016/0003-9861(87)90546-7. [DOI] [PubMed] [Google Scholar]
  12. Dry I. B., Wiskich J. T. Inhibition of 2-oxoglutarate oxidation in plant mitochondria by pyruvate. Biochem Biophys Res Commun. 1985 Dec 17;133(2):397–403. doi: 10.1016/0006-291x(85)90919-2. [DOI] [PubMed] [Google Scholar]
  13. Henderson C. E., Perham R. N. Purificaton of the pyruvate dehydrogenase multienzyme complex of Bacillus stearothermophilus and resolution of its four component polypeptides. Biochem J. 1980 Jul 1;189(1):161–172. doi: 10.1042/bj1890161. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Herz U., Schröder W., Liddell A., Leaver C. J., Brennicke A., Grohmann L. Purification of the NADH:ubiquinone oxidoreductase (complex I) of the respiratory chain from the inner mitochondrial membrane of Solanum tuberosum. J Biol Chem. 1994 Jan 21;269(3):2263–2269. [PubMed] [Google Scholar]
  15. Jilka J. M., Rahmatullah M., Kazemi M., Roche T. E. Properties of a newly characterized protein of the bovine kidney pyruvate dehydrogenase complex. J Biol Chem. 1986 Feb 5;261(4):1858–1867. [PubMed] [Google Scholar]
  16. Jordan S. W., Cronan J. E., Jr A new metabolic link. The acyl carrier protein of lipid synthesis donates lipoic acid to the pyruvate dehydrogenase complex in Escherichia coli and mitochondria. J Biol Chem. 1997 Jul 18;272(29):17903–17906. doi: 10.1074/jbc.272.29.17903. [DOI] [PubMed] [Google Scholar]
  17. Journet E. P., Bonner W. D., Douce R. Glutamate metabolism triggered by oxaloacetate in intact plant mitochondria. Arch Biochem Biophys. 1982 Mar;214(1):366–375. doi: 10.1016/0003-9861(82)90041-8. [DOI] [PubMed] [Google Scholar]
  18. Jänsch L., Kruft V., Schmitz U. K., Braun H. P. New insights into the composition, molecular mass and stoichiometry of the protein complexes of plant mitochondria. Plant J. 1996 Mar;9(3):357–368. doi: 10.1046/j.1365-313x.1996.09030357.x. [DOI] [PubMed] [Google Scholar]
  19. Koike M., Koike K. Structure, assembly and function of mammalian alpha-keto acid dehydrogenase complexes. Adv Biophys. 1976:187–227. [PubMed] [Google Scholar]
  20. Kresze G. B., Ronft H. Pyruvate dehydrogenase complex from baker's yeast. 2. Molecular structure, dissociation, and implications for the origin of mitochondria. Eur J Biochem. 1981 Oct;119(3):581–587. doi: 10.1111/j.1432-1033.1981.tb05647.x. [DOI] [PubMed] [Google Scholar]
  21. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  22. Leterme S., Boutry M. Purification and preliminary characterization of mitochondrial complex I (NADH: ubiquinone reductase) from broad bean (Vicia faba L.). Plant Physiol. 1993 Jun;102(2):435–443. doi: 10.1104/pp.102.2.435. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Linn T. C., Pelley J. W., Pettit F. H., Hucho F., Randall D. D., Reed L. J. -Keto acid dehydrogenase complexes. XV. Purification and properties of the component enzymes of the pyruvate dehydrogenase complexes from bovine kidney and heart. Arch Biochem Biophys. 1972 Feb;148(2):327–342. doi: 10.1016/0003-9861(72)90151-8. [DOI] [PubMed] [Google Scholar]
  24. Linn T. C. Studies on the apparent instability of bovine kidney alpha-ketoglutarate dehydrogenase complex. Arch Biochem Biophys. 1974 Apr 2;161(2):505–514. doi: 10.1016/0003-9861(74)90333-6. [DOI] [PubMed] [Google Scholar]
  25. Maas E., Bisswanger H. Localization of the alpha-oxoacid dehydrogenase multienzyme complexes within the mitochondrion. FEBS Lett. 1990 Dec 17;277(1-2):189–190. doi: 10.1016/0014-5793(90)80840-f. [DOI] [PubMed] [Google Scholar]
  26. McCartney R. G., Rice J. E., Sanderson S. J., Bunik V., Lindsay H., Lindsay J. G. Subunit interactions in the mammalian alpha-ketoglutarate dehydrogenase complex. Evidence for direct association of the alpha-ketoglutarate dehydrogenase and dihydrolipoamide dehydrogenase components. J Biol Chem. 1998 Sep 11;273(37):24158–24164. doi: 10.1074/jbc.273.37.24158. [DOI] [PubMed] [Google Scholar]
  27. Millar A. H., Knorpp C., Leaver C. J., Hill S. A. Plant mitochondrial pyruvate dehydrogenase complex: purification and identification of catalytic components in potato. Biochem J. 1998 Sep 15;334(Pt 3):571–576. doi: 10.1042/bj3340571. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Neuburger M., Journet E. P., Bligny R., Carde J. P., Douce R. Purification of plant mitochondria by isopycnic centrifugation in density gradients of Percoll. Arch Biochem Biophys. 1982 Aug;217(1):312–323. doi: 10.1016/0003-9861(82)90507-0. [DOI] [PubMed] [Google Scholar]
  29. Pascal N., Dumas R., Douce R. Comparison of the Kinetic Behavior toward Pyridine Nucleotides of NAD-Linked Dehydrogenases from Plant Mitochondria. Plant Physiol. 1990 Sep;94(1):189–193. doi: 10.1104/pp.94.1.189. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Porpaczy Z., Sumegi B., Alkonyi I. Interaction between NAD-dependent isocitrate dehydrogenase, alpha-ketoglutarate dehydrogenase complex, and NADH:ubiquinone oxidoreductase. J Biol Chem. 1987 Jul 15;262(20):9509–9514. [PubMed] [Google Scholar]
  31. Poulsen L. L., Wedding R. T. Purification and properties of the alpha-ketoglutarate dehydrogenase complex of cauliflower mitochondria. J Biol Chem. 1970 Nov 10;245(21):5709–5717. [PubMed] [Google Scholar]
  32. Powers-Greenwood S. L., Rahmatullah M., Radke G. A., Roche T. E. Separation of protein X from the dihydrolipoyl transacetylase component of the mammalian pyruvate dehydrogenase complex and function of protein X. J Biol Chem. 1989 Mar 5;264(7):3655–3657. [PubMed] [Google Scholar]
  33. Randall D. D., Rubin P. M., Fenko M. Plant pyruvate dehydrogenase complex purification, characterization and regulation by metabolites and phosphorylation. Biochim Biophys Acta. 1977 Dec 8;485(2):336–349. doi: 10.1016/0005-2744(77)90169-3. [DOI] [PubMed] [Google Scholar]
  34. Rasmusson AG, Heiser V, V, Zabaleta E, Brennicke A, Grohmann L. Physiological, biochemical and molecular aspects of mitochondrial complex I in plants . Biochim Biophys Acta. 1998 May 6;1364(2):101–111. doi: 10.1016/s0005-2728(98)00021-8. [DOI] [PubMed] [Google Scholar]
  35. Rice J. E., Dunbar B., Lindsay J. G. Sequences directing dihydrolipoamide dehydrogenase (E3) binding are located on the 2-oxoglutarate dehydrogenase (E1) component of the mammalian 2-oxoglutarate dehydrogenase multienzyme complex. EMBO J. 1992 Sep;11(9):3229–3235. doi: 10.1002/j.1460-2075.1992.tb05400.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Runswick M. J., Fearnley I. M., Skehel J. M., Walker J. E. Presence of an acyl carrier protein in NADH:ubiquinone oxidoreductase from bovine heart mitochondria. FEBS Lett. 1991 Jul 29;286(1-2):121–124. doi: 10.1016/0014-5793(91)80955-3. [DOI] [PubMed] [Google Scholar]
  37. Sackmann U., Zensen R., Röhlen D., Jahnke U., Weiss H. The acyl-carrier protein in Neurospora crassa mitochondria is a subunit of NADH:ubiquinone reductase (complex I). Eur J Biochem. 1991 Sep 1;200(2):463–469. doi: 10.1111/j.1432-1033.1991.tb16205.x. [DOI] [PubMed] [Google Scholar]
  38. Stanley C. J., Perham R. N. Purification of 2-oxo acid dehydrogenase multienzyme complexes from ox heart by a new method. Biochem J. 1980 Oct 1;191(1):147–154. doi: 10.1042/bj1910147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Thelen JJ, Miernyk JA, Randall DD. Partial purification and characterization of the maize mitochondrial pyruvate dehydrogenase complex . Plant Physiol. 1998 Apr;116(4):1443–1450. doi: 10.1104/pp.116.4.1443. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Turner S. R., Ireland R., Rawsthorne S. Purification and primary amino acid sequence of the L subunit of glycine decarboxylase. Evidence for a single lipoamide dehydrogenase in plant mitochondria. J Biol Chem. 1992 Apr 15;267(11):7745–7750. [PubMed] [Google Scholar]
  41. Wedding R. T., Black M. K. Nucleotide activation of cauliflower alpha-ketoglutarate dehydrogenase. J Biol Chem. 1971 Mar 25;246(6):1638–1643. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES