Abstract
It has been well established that purified lipoprotein lipase (LPL) can facilitate the cellular uptake of various native and modified lipoproteins when added exogenously to macrophages. Because activated macrophages express LPL endogenously, it was the aim of this study to investigate the effect of macrophage-produced LPL on the uptake of native low-density lipoprotein (LDL) and LDL that has been modified to various degrees by Cu(2+)-mediated oxidation. Cell binding and uptake of Eu(3+)-labelled native and oxidized LDL was determined in mouse peritoneal macrophages (MPM) from normal mice and induced mutant mice that lack LPL expression in MPM. We found that LPL expressed by MPM was able to increase cell binding and association of native LDL (by 121% and 101% respectively), mildly oxidized LDL (by 47% and 43%) and moderately oxidized LDL (by 30% and 22%). With increased levels of lipoprotein oxidation, the relative proportion of LPL-mediated LDL uptake decreased. This decrease was not due to weakened binding of LPL to oxidized LDL. The drastically increased uptake of highly oxidized LDL in MPM by scavenger-receptor-mediated pathways might dominate the simultaneous exogenous or endogenous LPL-mediated uptake of this lipoprotein. Competition experiments with positively charged poly(amino acids) furthermore suggested that histidine, arginine and lysine residues in LPL are important for the interaction between LDL and LPL. Our results imply that physiological levels of LPL produced by macrophages facilitate the uptake of native LDL as well as mildly and moderately oxidized LDL. This process might, in the micro-environment of arteries, contribute to the accumulation of macrophage lipids and the formation of foam cells.
Full Text
The Full Text of this article is available as a PDF (135.5 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Auerbach B. J., Bisgaier C. L., Wölle J., Saxena U. Oxidation of low density lipoproteins greatly enhances their association with lipoprotein lipase anchored to endothelial cell matrix. J Biol Chem. 1996 Jan 19;271(3):1329–1335. doi: 10.1074/jbc.271.3.1329. [DOI] [PubMed] [Google Scholar]
- Aviram M. Interaction of oxidized low density lipoprotein with macrophages in atherosclerosis, and the antiatherogenicity of antioxidants. Eur J Clin Chem Clin Biochem. 1996 Aug;34(8):599–608. [PubMed] [Google Scholar]
- Beisiegel U., Weber W., Bengtsson-Olivecrona G. Lipoprotein lipase enhances the binding of chylomicrons to low density lipoprotein receptor-related protein. Proc Natl Acad Sci U S A. 1991 Oct 1;88(19):8342–8346. doi: 10.1073/pnas.88.19.8342. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chait A., Iverius P. H., Brunzell J. D. Lipoprotein lipase secretion by human monocyte-derived macrophages. J Clin Invest. 1982 Feb;69(2):490–493. doi: 10.1172/JCI110473. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chen Q., Esterbauer H., Jürgens G. Studies on epitopes on low-density lipoprotein modified by 4-hydroxynonenal. Biochemical characterization and determination. Biochem J. 1992 Nov 15;288(Pt 1):249–254. doi: 10.1042/bj2880249. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dicorleto P. E., Zilversmit D. B. Lipoprotein lipase activity in bovine aorta. Proc Soc Exp Biol Med. 1975 Apr;148(4):1101–1105. doi: 10.3181/00379727-148-38696. [DOI] [PubMed] [Google Scholar]
- Esterbauer H., Gebicki J., Puhl H., Jürgens G. The role of lipid peroxidation and antioxidants in oxidative modification of LDL. Free Radic Biol Med. 1992 Oct;13(4):341–390. doi: 10.1016/0891-5849(92)90181-f. [DOI] [PubMed] [Google Scholar]
- Esterbauer H., Jürgens G., Quehenberger O., Koller E. Autoxidation of human low density lipoprotein: loss of polyunsaturated fatty acids and vitamin E and generation of aldehydes. J Lipid Res. 1987 May;28(5):495–509. [PubMed] [Google Scholar]
- Greilberger J., Schmut O., Jürgens G. In vitro interactions of oxidatively modified LDL with type I, II, III, IV, and V collagen, laminin, fibronectin, and poly-D-lysine. Arterioscler Thromb Vasc Biol. 1997 Nov;17(11):2721–2728. doi: 10.1161/01.atv.17.11.2721. [DOI] [PubMed] [Google Scholar]
- Hammer A., Kager G., Dohr G., Rabl H., Ghassempur I., Jürgens G. Generation, characterization, and histochemical application of monoclonal antibodies selectively recognizing oxidatively modified apoB-containing serum lipoproteins. Arterioscler Thromb Vasc Biol. 1995 May;15(5):704–713. doi: 10.1161/01.atv.15.5.704. [DOI] [PubMed] [Google Scholar]
- Havel R. J., Kane J. P., Kashyap M. L. Interchange of apolipoproteins between chylomicrons and high density lipoproteins during alimentary lipemia in man. J Clin Invest. 1973 Jan;52(1):32–38. doi: 10.1172/JCI107171. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hendriks W. L., Van Vark L. C., Schoonderwoerd K., Jansen H., Havekes L. M. Not the mature 56 kDa lipoprotein lipase protein but a 37 kDa protein co-purifying with the lipase mediates the binding of low density lipoproteins to J774 macrophages. Biochem J. 1998 Mar 1;330(Pt 2):765–769. doi: 10.1042/bj3300765. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hendriks W. L., van der Boom H., van Vark L. C., Havekes L. M. Lipoprotein lipase stimulates the binding and uptake of moderately oxidized low-density lipoprotein by J774 macrophages. Biochem J. 1996 Mar 1;314(Pt 2):563–568. doi: 10.1042/bj3140563. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Henson L. C., Schotz M. C. Detection and partial characterization of lipoprotein lipase in bovine aorta. Biochim Biophys Acta. 1975 Dec 17;409(3):360–366. doi: 10.1016/0005-2760(75)90031-4. [DOI] [PubMed] [Google Scholar]
- Jürgens G., Hoff H. F., Chisolm G. M., 3rd, Esterbauer H. Modification of human serum low density lipoprotein by oxidation--characterization and pathophysiological implications. Chem Phys Lipids. 1987 Nov-Dec;45(2-4):315–336. doi: 10.1016/0009-3084(87)90070-3. [DOI] [PubMed] [Google Scholar]
- Jürgens G., Lang J., Esterbauer H. Modification of human low-density lipoprotein by the lipid peroxidation product 4-hydroxynonenal. Biochim Biophys Acta. 1986 Jan 3;875(1):103–114. doi: 10.1016/0005-2760(86)90016-0. [DOI] [PubMed] [Google Scholar]
- Kaplan M., Aviram M. Oxidized LDL binding to a macrophage-secreted extracellular matrix. Biochem Biophys Res Commun. 1997 Aug 18;237(2):271–276. doi: 10.1006/bbrc.1997.7130. [DOI] [PubMed] [Google Scholar]
- Khoo J. C., Mahoney E. M., Witztum J. L. Secretion of lipoprotein lipase by macrophages in culture. J Biol Chem. 1981 Jul 25;256(14):7105–7108. [PubMed] [Google Scholar]
- Khouw A. S., Parthasarathy S., Witztum J. L. Radioiodination of low density lipoprotein initiates lipid peroxidation: protection by use of antioxidants. J Lipid Res. 1993 Sep;34(9):1483–1496. [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Levak-Frank S., Weinstock P. H., Hayek T., Verdery R., Hofmann W., Ramakrishnan R., Sattler W., Breslow J. L., Zechner R. Induced mutant mice expressing lipoprotein lipase exclusively in muscle have subnormal triglycerides yet reduced high density lipoprotein cholesterol levels in plasma. J Biol Chem. 1997 Jul 4;272(27):17182–17190. doi: 10.1074/jbc.272.27.17182. [DOI] [PubMed] [Google Scholar]
- Lougheed M., Steinbrecher U. P. Mechanism of uptake of copper-oxidized low density lipoprotein in macrophages is dependent on its extent of oxidation. J Biol Chem. 1996 May 17;271(20):11798–11805. doi: 10.1074/jbc.271.20.11798. [DOI] [PubMed] [Google Scholar]
- Mahoney E. M., Khoo J. C., Steinberg D. Lipoprotein lipase secretion by human monocytes and rabbit alveolar macrophages in culture. Proc Natl Acad Sci U S A. 1982 Mar;79(5):1639–1642. doi: 10.1073/pnas.79.5.1639. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mulder M., Lombardi P., Jansen H., van Berkel T. J., Frants R. R., Havekes L. M. Heparan sulphate proteoglycans are involved in the lipoprotein lipase-mediated enhancement of the cellular binding of very low density and low density lipoproteins. Biochem Biophys Res Commun. 1992 Jun 15;185(2):582–587. doi: 10.1016/0006-291x(92)91664-c. [DOI] [PubMed] [Google Scholar]
- Mulder M., Lombardi P., Jansen H., van Berkel T. J., Frants R. R., Havekes L. M. Low density lipoprotein receptor internalizes low density and very low density lipoproteins that are bound to heparan sulfate proteoglycans via lipoprotein lipase. J Biol Chem. 1993 May 5;268(13):9369–9375. [PubMed] [Google Scholar]
- Nilsson-Ehle P., Garfinkel A. S., Schotz M. C. Lipolytic enzymes and plasma lipoprotein metabolism. Annu Rev Biochem. 1980;49:667–693. doi: 10.1146/annurev.bi.49.070180.003315. [DOI] [PubMed] [Google Scholar]
- O'Brien K. D., Gordon D., Deeb S., Ferguson M., Chait A. Lipoprotein lipase is synthesized by macrophage-derived foam cells in human coronary atherosclerotic plaques. J Clin Invest. 1992 May;89(5):1544–1550. doi: 10.1172/JCI115747. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Obunike J. C., Edwards I. J., Rumsey S. C., Curtiss L. K., Wagner W. D., Deckelbaum R. J., Goldberg I. J. Cellular differences in lipoprotein lipase-mediated uptake of low density lipoproteins. J Biol Chem. 1994 May 6;269(18):13129–13135. [PubMed] [Google Scholar]
- Rumsey S. C., Obunike J. C., Arad Y., Deckelbaum R. J., Goldberg I. J. Lipoprotein lipase-mediated uptake and degradation of low density lipoproteins by fibroblasts and macrophages. J Clin Invest. 1992 Oct;90(4):1504–1512. doi: 10.1172/JCI116018. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rutledge J. C., Woo M. M., Rezai A. A., Curtiss L. K., Goldberg I. J. Lipoprotein lipase increases lipoprotein binding to the artery wall and increases endothelial layer permeability by formation of lipolysis products. Circ Res. 1997 Jun;80(6):819–828. doi: 10.1161/01.res.80.6.819. [DOI] [PubMed] [Google Scholar]
- Saxena U., Auerbach B. J., Ferguson E., Wölle J., Marcel Y. L., Weisgraber K. H., Hegele R. A., Bisgaier C. L. Apolipoprotein B and E basic amino acid clusters influence low-density lipoprotein association with lipoprotein lipase anchored to the subendothelial matrix. Arterioscler Thromb Vasc Biol. 1995 Aug;15(8):1240–1247. doi: 10.1161/01.atv.15.8.1240. [DOI] [PubMed] [Google Scholar]
- Saxena U., Klein M. G., Goldberg I. J. Identification and characterization of the endothelial cell surface lipoprotein lipase receptor. J Biol Chem. 1991 Sep 15;266(26):17516–17521. [PubMed] [Google Scholar]
- Saxena U., Klein M. G., Vanni T. M., Goldberg I. J. Lipoprotein lipase increases low density lipoprotein retention by subendothelial cell matrix. J Clin Invest. 1992 Feb;89(2):373–380. doi: 10.1172/JCI115595. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Saxena U., Witte L. D., Goldberg I. J. Release of endothelial cell lipoprotein lipase by plasma lipoproteins and free fatty acids. J Biol Chem. 1989 Mar 15;264(8):4349–4355. [PubMed] [Google Scholar]
- Sivaram P., Choi S. Y., Curtiss L. K., Goldberg I. J. An amino-terminal fragment of apolipoprotein B binds to lipoprotein lipase and may facilitate its binding to endothelial cells. J Biol Chem. 1994 Apr 1;269(13):9409–9412. [PubMed] [Google Scholar]
- Steinberg D. Low density lipoprotein oxidation and its pathobiological significance. J Biol Chem. 1997 Aug 22;272(34):20963–20966. doi: 10.1074/jbc.272.34.20963. [DOI] [PubMed] [Google Scholar]
- Steinberg D., Parthasarathy S., Carew T. E., Khoo J. C., Witztum J. L. Beyond cholesterol. Modifications of low-density lipoprotein that increase its atherogenicity. N Engl J Med. 1989 Apr 6;320(14):915–924. doi: 10.1056/NEJM198904063201407. [DOI] [PubMed] [Google Scholar]
- Steinbrecher U. P. Oxidation of human low density lipoprotein results in derivatization of lysine residues of apolipoprotein B by lipid peroxide decomposition products. J Biol Chem. 1987 Mar 15;262(8):3603–3608. [PubMed] [Google Scholar]
- Vance J. E., Khoo J. C., Steinberg D. Lipoprotein lipase in cultured pig aortic smooth muscle cells. Arteriosclerosis. 1982 Sep-Oct;2(5):390–395. doi: 10.1161/01.atv.2.5.390. [DOI] [PubMed] [Google Scholar]
- Wang X., Greilberger J., Jürgens G. Time-resolved fluorometric assay for measuring cell binding and association of native and oxidized low-density lipoproteins to macrophages. Anal Biochem. 1999 Feb 15;267(2):271–278. doi: 10.1006/abio.1998.3023. [DOI] [PubMed] [Google Scholar]
- Weinstock P. H., Bisgaier C. L., Aalto-Setälä K., Radner H., Ramakrishnan R., Levak-Frank S., Essenburg A. D., Zechner R., Breslow J. L. Severe hypertriglyceridemia, reduced high density lipoprotein, and neonatal death in lipoprotein lipase knockout mice. Mild hypertriglyceridemia with impaired very low density lipoprotein clearance in heterozygotes. J Clin Invest. 1995 Dec;96(6):2555–2568. doi: 10.1172/JCI118319. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ylä-Herttuala S., Lipton B. A., Rosenfeld M. E., Goldberg I. J., Steinberg D., Witztum J. L. Macrophages and smooth muscle cells express lipoprotein lipase in human and rabbit atherosclerotic lesions. Proc Natl Acad Sci U S A. 1991 Nov 15;88(22):10143–10147. doi: 10.1073/pnas.88.22.10143. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ylä-Herttuala S., Rosenfeld M. E., Parthasarathy S., Sigal E., Särkioja T., Witztum J. L., Steinberg D. Gene expression in macrophage-rich human atherosclerotic lesions. 15-lipoxygenase and acetyl low density lipoprotein receptor messenger RNA colocalize with oxidation specific lipid-protein adducts. J Clin Invest. 1991 Apr;87(4):1146–1152. doi: 10.1172/JCI115111. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zechner R. Rapid and simple isolation procedure for lipoprotein lipase from human milk. Biochim Biophys Acta. 1990 May 1;1044(1):20–25. doi: 10.1016/0005-2760(90)90213-h. [DOI] [PubMed] [Google Scholar]
- Zilversmit D. B. A proposal linking atherogenesis to the interaction of endothelial lipoprotein lipase with triglyceride-rich lipoproteins. Circ Res. 1973 Dec;33(6):633–638. doi: 10.1161/01.res.33.6.633. [DOI] [PubMed] [Google Scholar]
- el-Saadani M., Esterbauer H., el-Sayed M., Goher M., Nassar A. Y., Jürgens G. A spectrophotometric assay for lipid peroxides in serum lipoproteins using a commercially available reagent. J Lipid Res. 1989 Apr;30(4):627–630. [PubMed] [Google Scholar]