Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1999 Oct 15;343(Pt 2):473–478.

Metabolic adaptations to dietary fat malabsorption in chylomicron-deficient mice.

H R Jung 1, S M Turner 1, R A Neese 1, S G Young 1, M K Hellerstein 1
PMCID: PMC1220577  PMID: 10510316

Abstract

A mouse model of chylomicron deficiency was recently developed; these mice express a human apolipoprotein (apo) B transgene in the liver but do not synthesize any apoB in the intestine. Despite severe intestinal fat malabsorption, the mice maintain normal concentrations of plasma lipids and liver-derived apoB 100-containing lipoproteins. We investigated the metabolic mechanisms by which plasma lipid levels are kept normal. De novo lipogenesis (DNL) and cholesterogenesis were measured by mass isotopomer distribution analysis (MIDA). Plasma non-esterified fatty acid (NEFA) fluxes and hepatic re-esterification of labelled plasma NEFA were also measured. Hepatic and plasma triacylglycerol (TG) concentrations and plasma NEFA fluxes were not different between chylomicron-deficient mice and controls. The contribution from DNL to the hepatic TG pool was only modestly higher in chylomicron-deficient mice [12+/-2.1% (n=7) compared with 3.7+/-1.0% (n=9); means+/-S.E.M.], whereas cholesterogenesis was markedly elevated. The fractional contribution from plasma NEFA to hepatic TG was greatly elevated in the chylomicron-deficient animals (62% compared with 23%). Accordingly, 73% of hepatic TG was neither from DNL nor from plasma NEFA in controls, presumably reflecting prior contribution from chylomicron remnants, compared with only 26% in the chylomicron-deficient group. The long-term contribution from DNL to adipose fat stores reached approximately the same steady-state values (approximately 30%) in the two groups. Body fat accumulation was much lower in chylomicron-deficient animals; thus, whole-body absolute DNL was significantly lower. We conclude that plasma and hepatic TG pools and hepatic secretion of apoB-containing particles are maintained at normal levels in chylomicron-deficient mice, not by de novo fatty acid synthesis, but by more avid re-esterification of plasma NEFA, replacing the normally predominant contribution from chylomicrons, and that some dietary fat can be absorbed by apoB-independent mechanisms.

Full Text

The Full Text of this article is available as a PDF (119.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Cooper A. D. Hepatic uptake of chylomicron remnants. J Lipid Res. 1997 Nov;38(11):2173–2192. [PubMed] [Google Scholar]
  2. Dixon J. L., Ginsberg H. N. Hepatic synthesis of lipoproteins and apolipoproteins. Semin Liver Dis. 1992 Nov;12(4):364–372. doi: 10.1055/s-2008-1040406. [DOI] [PubMed] [Google Scholar]
  3. Faix D., Neese R., Kletke C., Wolden S., Cesar D., Coutlangus M., Shackleton C. H., Hellerstein M. K. Quantification of menstrual and diurnal periodicities in rates of cholesterol and fat synthesis in humans. J Lipid Res. 1993 Dec;34(12):2063–2075. [PubMed] [Google Scholar]
  4. Farese R. V., Jr, Ruland S. L., Flynn L. M., Stokowski R. P., Young S. G. Knockout of the mouse apolipoprotein B gene results in embryonic lethality in homozygotes and protection against diet-induced hypercholesterolemia in heterozygotes. Proc Natl Acad Sci U S A. 1995 Feb 28;92(5):1774–1778. doi: 10.1073/pnas.92.5.1774. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Girard J., Perdereau D., Foufelle F., Prip-Buus C., Ferré P. Regulation of lipogenic enzyme gene expression by nutrients and hormones. FASEB J. 1994 Jan;8(1):36–42. doi: 10.1096/fasebj.8.1.7905448. [DOI] [PubMed] [Google Scholar]
  6. Gutnikov G. Fatty acid profiles of lipid samples. J Chromatogr B Biomed Appl. 1995 Sep 15;671(1-2):71–89. doi: 10.1016/0378-4347(95)00116-z. [DOI] [PubMed] [Google Scholar]
  7. Hamilton R. L., Wong J. S., Cham C. M., Nielsen L. B., Young S. G. Chylomicron-sized lipid particles are formed in the setting of apolipoprotein B deficiency. J Lipid Res. 1998 Aug;39(8):1543–1557. [PubMed] [Google Scholar]
  8. Hellerstein M. K., Christiansen M., Kaempfer S., Kletke C., Wu K., Reid J. S., Mulligan K., Hellerstein N. S., Shackleton C. H. Measurement of de novo hepatic lipogenesis in humans using stable isotopes. J Clin Invest. 1991 May;87(5):1841–1852. doi: 10.1172/JCI115206. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hellerstein M. K., Neese R. A. Mass isotopomer distribution analysis: a technique for measuring biosynthesis and turnover of polymers. Am J Physiol. 1992 Nov;263(5 Pt 1):E988–1001. doi: 10.1152/ajpendo.1992.263.5.E988. [DOI] [PubMed] [Google Scholar]
  10. Hellerstein M. K., Schwarz J. M., Neese R. A. Regulation of hepatic de novo lipogenesis in humans. Annu Rev Nutr. 1996;16:523–557. doi: 10.1146/annurev.nu.16.070196.002515. [DOI] [PubMed] [Google Scholar]
  11. Hellerstein M. K., Wu K., Kaempfer S., Kletke C., Shackleton C. H. Sampling the lipogenic hepatic acetyl-CoA pool in vivo in the rat. Comparison of xenobiotic probe to values predicted from isotopomeric distribution in circulating lipids and measurement of lipogenesis and acetyl-CoA dilution. J Biol Chem. 1991 Jun 15;266(17):10912–10919. [PubMed] [Google Scholar]
  12. Hjelte L., Melin T., Nilsson A., Strandvik B. Absorption and metabolism of [3H]arachidonic and [14C]linoleic acid in essential fatty acid-deficient rats. Am J Physiol. 1990 Jul;259(1 Pt 1):G116–G124. doi: 10.1152/ajpgi.1990.259.1.G116. [DOI] [PubMed] [Google Scholar]
  13. Horton J. D., Shimomura I., Brown M. S., Hammer R. E., Goldstein J. L., Shimano H. Activation of cholesterol synthesis in preference to fatty acid synthesis in liver and adipose tissue of transgenic mice overproducing sterol regulatory element-binding protein-2. J Clin Invest. 1998 Jun 1;101(11):2331–2339. doi: 10.1172/JCI2961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hudgins L. C., Hellerstein M., Seidman C., Neese R., Diakun J., Hirsch J. Human fatty acid synthesis is stimulated by a eucaloric low fat, high carbohydrate diet. J Clin Invest. 1996 May 1;97(9):2081–2091. doi: 10.1172/JCI118645. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hyun S. A., Vahouny V., Treadwell C. R. Portal absorption of fatty acids in lymph- and portal vein-cannulated rats. Biochim Biophys Acta. 1967 Apr 4;137(2):296–305. doi: 10.1016/0005-2760(67)90105-1. [DOI] [PubMed] [Google Scholar]
  16. Leshner A. I., Litwin V. A., Squibb R. L. A simple method for carcass analysis. Physiol Behav. 1972 Aug;9(2):281–282. doi: 10.1016/0031-9384(72)90251-x. [DOI] [PubMed] [Google Scholar]
  17. Linton M. F., Farese R. V., Jr, Chiesa G., Grass D. S., Chin P., Hammer R. E., Hobbs H. H., Young S. G. Transgenic mice expressing high plasma concentrations of human apolipoprotein B100 and lipoprotein(a). J Clin Invest. 1993 Dec;92(6):3029–3037. doi: 10.1172/JCI116927. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Mansbach C. M., 2nd, Dowell R. F. Portal transport of long acyl chain lipids: effect of phosphatidylcholine and low infusion rates. Am J Physiol. 1993 Jun;264(6 Pt 1):G1082–G1089. doi: 10.1152/ajpgi.1993.264.6.G1082. [DOI] [PubMed] [Google Scholar]
  19. McDonald G. B., Saunders D. R., Weidman M., Fisher L. Portal venous transport of long-chain fatty acids absorbed from rat intestine. Am J Physiol. 1980 Sep;239(3):G141–G150. doi: 10.1152/ajpgi.1980.239.3.G141. [DOI] [PubMed] [Google Scholar]
  20. Ren J. M., Marshall B. A., Mueckler M. M., McCaleb M., Amatruda J. M., Shulman G. I. Overexpression of Glut4 protein in muscle increases basal and insulin-stimulated whole body glucose disposal in conscious mice. J Clin Invest. 1995 Jan;95(1):429–432. doi: 10.1172/JCI117673. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Schwarz J. M., Neese R. A., Turner S., Dare D., Hellerstein M. K. Short-term alterations in carbohydrate energy intake in humans. Striking effects on hepatic glucose production, de novo lipogenesis, lipolysis, and whole-body fuel selection. J Clin Invest. 1995 Dec;96(6):2735–2743. doi: 10.1172/JCI118342. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Ways P. O., Parmentier C. M., Kayden H. J., Jones J. W., Saunders D. R., Rubin C. E. Studies on the absorptive defect for triglyceride in abetalipoproteinemia. J Clin Invest. 1967 Jan;46(1):35–46. doi: 10.1172/JCI105509. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Wolfe R. R., Evans J. E., Mullany C. J., Burke J. F. Measurement of plasma free fatty acid turnover and oxidation using [1-13C]palmitic acid. Biomed Mass Spectrom. 1980 Apr;7(4):168–171. doi: 10.1002/bms.1200070407. [DOI] [PubMed] [Google Scholar]
  24. Young S. G., Cham C. M., Pitas R. E., Burri B. J., Connolly A., Flynn L., Pappu A. S., Wong J. S., Hamilton R. L., Farese R. V., Jr A genetic model for absent chylomicron formation: mice producing apolipoprotein B in the liver, but not in the intestine. J Clin Invest. 1995 Dec;96(6):2932–2946. doi: 10.1172/JCI118365. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES