Abstract
Complementary DNA clones encoding human aflatoxin B(1) aldehyde reductase (AKR7A2), aldehyde reductase (AKR1A1), aldose reductase (AKR1B1), dihydrodiol dehydrogenase 1 (AKR1C1) and chlordecone reductase (AKR1C4) have been expressed in Escherichia coli. These members of the aldo-keto reductase (AKR) superfamily have been purified from E. coli as recombinant proteins. The recently identified AKR7A2 was shown to differ from the AKR1 isoenzymes in being able to catalyse the reduction of 2-carboxybenzaldehyde. Also, AKR7A2 was found to exhibit a narrow substrate specificity, with activity being restricted to succinic semialdehyde (SSA), 2-nitrobenzaldehyde, pyridine-2-aldehyde, isatin, 1,2-naphthoquinone (1,2-NQ) and 9,10-phenanthrenequinone. In contrast, AKR1A1 reduces a broad spectrum of carbonyl-containing compounds, displaying highest specific activity for SSA, 4-carboxybenzaldehyde, 4-nitrobenzaldehyde, pyridine-3-aldehyde, pyridine-4-aldehyde, 4-hydroxynonenal, phenylglyoxal, methylglyoxal, 2,3-hexanedione, 1, 2-NQ, 16-ketoestrone and d-glucuronic acid. Comparison between the kinetic properties of AKR7A2 and AKR1A1 showed that both recombinant enzymes exhibited roughly similar k(cat)/K(m) values for SSA, 1,2-NQ and 16-ketoestrone. Many of the compounds which are substrates for AKR1A1 also serve as substrates for AKR1B1, though the latter enzyme was shown to display a specific activity significantly less than that of AKR1A1 for most of the aromatic and aliphatic aldehydes studied. Neither AKR1C1 nor AKR1C4 was found to possess high reductase activity towards aliphatic aldehydes, aromatic aldehydes, aldoses or dicarbonyls. However, unlike AKR1A1 and AKR1B1, both AKR1C1 and AKR1C4 were able to catalyse the oxidation of 1-acenaphthenol and, in addition, AKR1C4 could oxidize di- and tri-hydroxylated bile acids. Specific antibodies raised against AKR7A2, AKR1A1, AKR1B1, AKR1C1 and AKR1C4 have been used to show the presence of all of the reductases in human hepatic cytosol; the levels of AKR1B1 and AKR1C1 were markedly elevated in livers with alcohol-associated injury, and indeed AKR1B1 was only detectable in livers with evidence of alcoholic liver disease. Western blotting of extracts from brain, heart, kidney, liver, lung, prostate, skeletal muscle, small intestine, spleen and testis showed that AKR7A2 is present in all of the organs examined, and AKR1B1 is similarly widely distributed in human tissues. These experiments revealed however, that the expression of AKR1A1 is restricted primarily to brain, kidney, liver and small intestine. The AKR1C family members proved not to be as widely expressed as the other reductases, with AKR1C1 being observed in only kidney, liver and testis, and AKR1C4 being found in liver alone. As human kidney is a rich source of AKR, the isoenzymes in this organ have been studied further. Anion-exchange chromatography of human renal cytosol on Q-Sepharose allowed resolution of AKR1A1, AKR1B1, AKR1C1 and AKR7A2, as identified by substrate specificity and Western blotting. Immunohistochemistry of human kidney demonstrated that AKR7A2 is expressed in a similar fashion to the AKR1 family members in proximal and distal convoluted renal tubules. Furthermore, both AKR7A2 and AKR1 members were expressed in renal carcinoma cells, suggesting that these groups of isoenzymes may be engaged in related physiological functions.
Full Text
The Full Text of this article is available as a PDF (523.5 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ansari N. H., Srivastava S. K. The distribution of aldose and aldehyde reductases in different regions of human and bovine kidney. Biochem Mol Biol Int. 1993 May;30(1):37–44. [PubMed] [Google Scholar]
- Bagnasco S. M., Uchida S., Balaban R. S., Kador P. F., Burg M. B. Induction of aldose reductase and sorbitol in renal inner medullary cells by elevated extracellular NaCl. Proc Natl Acad Sci U S A. 1987 Mar;84(6):1718–1720. doi: 10.1073/pnas.84.6.1718. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Barski O. A., Gabbay K. H., Grimshaw C. E., Bohren K. M. Mechanism of human aldehyde reductase: characterization of the active site pocket. Biochemistry. 1995 Sep 5;34(35):11264–11275. doi: 10.1021/bi00035a036. [DOI] [PubMed] [Google Scholar]
- Bohren K. M., Bullock B., Wermuth B., Gabbay K. H. The aldo-keto reductase superfamily. cDNAs and deduced amino acid sequences of human aldehyde and aldose reductases. J Biol Chem. 1989 Jun 5;264(16):9547–9551. [PubMed] [Google Scholar]
- Bohren K. M., Grimshaw C. E., Gabbay K. H. Catalytic effectiveness of human aldose reductase. Critical role of C-terminal domain. J Biol Chem. 1992 Oct 15;267(29):20965–20970. [PubMed] [Google Scholar]
- Bohren K. M., Page J. L., Shankar R., Henry S. P., Gabbay K. H. Expression of human aldose and aldehyde reductases. Site-directed mutagenesis of a critical lysine 262. J Biol Chem. 1991 Dec 15;266(35):24031–24037. [PubMed] [Google Scholar]
- Burczynski M. E., Lin H. K., Penning T. M. Isoform-specific induction of a human aldo-keto reductase by polycyclic aromatic hydrocarbons (PAHs), electrophiles, and oxidative stress: implications for the alternative pathway of PAH activation catalyzed by human dihydrodiol dehydrogenase. Cancer Res. 1999 Feb 1;59(3):607–614. [PubMed] [Google Scholar]
- Burg M. B. Molecular basis of osmotic regulation. Am J Physiol. 1995 Jun;268(6 Pt 2):F983–F996. doi: 10.1152/ajprenal.1995.268.6.F983. [DOI] [PubMed] [Google Scholar]
- Cao D., Fan S. T., Chung S. S. Identification and characterization of a novel human aldose reductase-like gene. J Biol Chem. 1998 May 8;273(19):11429–11435. doi: 10.1074/jbc.273.19.11429. [DOI] [PubMed] [Google Scholar]
- Cavalieri E. L., Stack D. E., Devanesan P. D., Todorovic R., Dwivedy I., Higginbotham S., Johansson S. L., Patil K. D., Gross M. L., Gooden J. K. Molecular origin of cancer: catechol estrogen-3,4-quinones as endogenous tumor initiators. Proc Natl Acad Sci U S A. 1997 Sep 30;94(20):10937–10942. doi: 10.1073/pnas.94.20.10937. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chen J. J., Schenker S., Henderson G. I. 4-hydroxynonenal levels are enhanced in fetal liver mitochondria by in utero ethanol exposure. Hepatology. 1997 Jan;25(1):142–147. doi: 10.1002/hep.510250126. [DOI] [PubMed] [Google Scholar]
- Ciaccio P. J., Jaiswal A. K., Tew K. D. Regulation of human dihydrodiol dehydrogenase by Michael acceptor xenobiotics. J Biol Chem. 1994 Jun 3;269(22):15558–15562. [PubMed] [Google Scholar]
- Ciaccio P. J., Tew K. D. cDNA and deduced amino acid sequences of a human colon dihydrodiol dehydrogenase. Biochim Biophys Acta. 1994 Jun 28;1186(1-2):129–132. doi: 10.1016/0005-2728(94)90144-9. [DOI] [PubMed] [Google Scholar]
- Deyashiki Y., Ogasawara A., Nakayama T., Nakanishi M., Miyabe Y., Sato K., Hara A. Molecular cloning of two human liver 3 alpha-hydroxysteroid/dihydrodiol dehydrogenase isoenzymes that are identical with chlordecone reductase and bile-acid binder. Biochem J. 1994 Apr 15;299(Pt 2):545–552. doi: 10.1042/bj2990545. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Deyashiki Y., Taniguchi H., Amano T., Nakayama T., Hara A., Sawada H. Structural and functional comparison of two human liver dihydrodiol dehydrogenases associated with 3 alpha-hydroxysteroid dehydrogenase activity. Biochem J. 1992 Mar 15;282(Pt 3):741–746. doi: 10.1042/bj2820741. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ellis E. M., Hayes J. D. Substrate specificity of an aflatoxin-metabolizing aldehyde reductase. Biochem J. 1995 Dec 1;312(Pt 2):535–541. doi: 10.1042/bj3120535. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ellis E. M., Judah D. J., Neal G. E., Hayes J. D. An ethoxyquin-inducible aldehyde reductase from rat liver that metabolizes aflatoxin B1 defines a subfamily of aldo-keto reductases. Proc Natl Acad Sci U S A. 1993 Nov 1;90(21):10350–10354. doi: 10.1073/pnas.90.21.10350. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ellis E. M., Judah D. J., Neal G. E., O'Connor T., Hayes J. D. Regulation of carbonyl-reducing enzymes in rat liver by chemoprotectors. Cancer Res. 1996 Jun 15;56(12):2758–2766. [PubMed] [Google Scholar]
- Feather M. S., Flynn T. G., Munro K. A., Kubiseski T. J., Walton D. J. Catalysis of reduction of carbohydrate 2-oxoaldehydes (osones) by mammalian aldose reductase and aldehyde reductase. Biochim Biophys Acta. 1995 May 11;1244(1):10–16. doi: 10.1016/0304-4165(94)00156-r. [DOI] [PubMed] [Google Scholar]
- Grimshaw C. E., Mathur E. J. Immunoquantitation of aldose reductase in human tissues. Anal Biochem. 1989 Jan;176(1):66–71. doi: 10.1016/0003-2697(89)90273-x. [DOI] [PubMed] [Google Scholar]
- Hara A., Matsuura K., Tamada Y., Sato K., Miyabe Y., Deyashiki Y., Ishida N. Relationship of human liver dihydrodiol dehydrogenases to hepatic bile-acid-binding protein and an oxidoreductase of human colon cells. Biochem J. 1996 Jan 15;313(Pt 2):373–376. doi: 10.1042/bj3130373. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hara A., Matsuura K., Tamada Y., Sato K., Miyabe Y., Deyashiki Y., Ishida N. Relationship of human liver dihydrodiol dehydrogenases to hepatic bile-acid-binding protein and an oxidoreductase of human colon cells. Biochem J. 1996 Jan 15;313(Pt 2):373–376. doi: 10.1042/bj3130373. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hayes J. D., Ellis E. M., Neal G. E., Harrison D. J., Manson M. M. Cellular response to cancer chemopreventive agents: contribution of the antioxidant responsive element to the adaptive response to oxidative and chemical stress. Biochem Soc Symp. 1999;64:141–168. [PubMed] [Google Scholar]
- Hayes J. D., Mantle T. J. Use of immuno-blot techniques to discriminate between the glutathione S-transferase Yf, Yk, Ya, Yn/Yb and Yc subunits and to study their distribution in extrahepatic tissues. Evidence for three immunochemically distinct groups of transferase in the rat. Biochem J. 1986 Feb 1;233(3):779–788. doi: 10.1042/bj2330779. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hayes J. D., Pulford D. J. The glutathione S-transferase supergene family: regulation of GST and the contribution of the isoenzymes to cancer chemoprotection and drug resistance. Crit Rev Biochem Mol Biol. 1995;30(6):445–600. doi: 10.3109/10409239509083491. [DOI] [PubMed] [Google Scholar]
- Henle E. S., Linn S. Formation, prevention, and repair of DNA damage by iron/hydrogen peroxide. J Biol Chem. 1997 Aug 1;272(31):19095–19098. doi: 10.1074/jbc.272.31.19095. [DOI] [PubMed] [Google Scholar]
- Hohman T. C., Carper D., Dasgupta S., Kaneko M. Osmotic stress induces aldose reductase in glomerular endothelial cells. Adv Exp Med Biol. 1991;284:139–152. doi: 10.1007/978-1-4684-5901-2_17. [DOI] [PubMed] [Google Scholar]
- Inoue S., Sharma R. C., Schimke R. T., Simoni R. D. Cellular detoxification of tripeptidyl aldehydes by an aldo-keto reductase. J Biol Chem. 1993 Mar 15;268(8):5894–5898. [PubMed] [Google Scholar]
- Ireland L. S., Harrison D. J., Neal G. E., Hayes J. D. Molecular cloning, expression and catalytic activity of a human AKR7 member of the aldo-keto reductase superfamily: evidence that the major 2-carboxybenzaldehyde reductase from human liver is a homologue of rat aflatoxin B1-aldehyde reductase. Biochem J. 1998 May 15;332(Pt 1):21–34. doi: 10.1042/bj3320021. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jans A. W., Grunewald R. W., Kinne R. K. Pathways for organic osmolyte synthesis in rabbit renal papillary tissue, a metabolic study using 13C-labeled substrates. Biochim Biophys Acta. 1988 Sep 16;971(2):157–162. doi: 10.1016/0167-4889(88)90187-5. [DOI] [PubMed] [Google Scholar]
- Jez J. M., Bennett M. J., Schlegel B. P., Lewis M., Penning T. M. Comparative anatomy of the aldo-keto reductase superfamily. Biochem J. 1997 Sep 15;326(Pt 3):625–636. doi: 10.1042/bj3260625. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Khanna M., Qin K. N., Wang R. W., Cheng K. C. Substrate specificity, gene structure, and tissue-specific distribution of multiple human 3 alpha-hydroxysteroid dehydrogenases. J Biol Chem. 1995 Aug 25;270(34):20162–20168. doi: 10.1074/jbc.270.34.20162. [DOI] [PubMed] [Google Scholar]
- Klein J., Seidel A., Frank H., Oesch F., Platt K. L. Regiospecific oxidation of polycyclic aromatic dihydrodiols by rat liver dihydrodiol dehydrogenase. Chem Biol Interact. 1991;79(3):287–303. doi: 10.1016/0009-2797(91)90110-s. [DOI] [PubMed] [Google Scholar]
- Knight L. P., Primiano T., Groopman J. D., Kensler T. W., Sutter T. R. cDNA cloning, expression and activity of a second human aflatoxin B1-metabolizing member of the aldo-keto reductase superfamily, AKR7A3. Carcinogenesis. 1999 Jul;20(7):1215–1223. doi: 10.1093/carcin/20.7.1215. [DOI] [PubMed] [Google Scholar]
- Molowa D. T., Shayne A. G., Guzelian P. S. Purification and characterization of chlordecone reductase from human liver. J Biol Chem. 1986 Sep 25;261(27):12624–12627. [PubMed] [Google Scholar]
- Monnier V. M., Sell D. R., Nagaraj R. H., Miyata S. Mechanisms of protection against damage mediated by the Maillard reaction in aging. Gerontology. 1991;37(1-3):152–165. doi: 10.1159/000213256. [DOI] [PubMed] [Google Scholar]
- Nakagawa M., Tsukada F., Nakayama T., Matsuura K., Hara A., Sawada H. Identification of two dihydrodiol dehydrogenases associated with 3(17)alpha-hydroxysteroid dehydrogenase activity in mouse kidney. J Biochem. 1989 Oct;106(4):633–638. doi: 10.1093/oxfordjournals.jbchem.a122908. [DOI] [PubMed] [Google Scholar]
- O'Dwyer P. J., LaCreta F., Nash S., Tinsley P. W., Schilder R., Clapper M. L., Tew K. D., Panting L., Litwin S., Comis R. L. Phase I study of thiotepa in combination with the glutathione transferase inhibitor ethacrynic acid. Cancer Res. 1991 Nov 15;51(22):6059–6065. [PubMed] [Google Scholar]
- Ohara H., Miyabe Y., Deyashiki Y., Matsuura K., Hara A. Reduction of drug ketones by dihydrodiol dehydrogenases, carbonyl reductase and aldehyde reductase of human liver. Biochem Pharmacol. 1995 Jul 17;50(2):221–227. doi: 10.1016/0006-2952(95)00124-i. [DOI] [PubMed] [Google Scholar]
- Penning T. M., Bennett M. J., Smith-Hoog S., Schlegel B. P., Jez J. M., Lewis M. Structure and function of 3 alpha-hydroxysteroid dehydrogenase. Steroids. 1997 Jan;62(1):101–111. doi: 10.1016/s0039-128x(96)00167-5. [DOI] [PubMed] [Google Scholar]
- Penning T. M., Pawlowski J. E., Schlegel B. P., Jez J. M., Lin H. K., Hoog S. S., Bennett M. J., Lewis M. Mammalian 3 alpha-hydroxysteroid dehydrogenases. Steroids. 1996 Sep;61(9):508–523. doi: 10.1016/s0039-128x(96)00093-1. [DOI] [PubMed] [Google Scholar]
- Petrash J. M., Harter T. M., Devine C. S., Olins P. O., Bhatnagar A., Liu S., Srivastava S. K. Involvement of cysteine residues in catalysis and inhibition of human aldose reductase. Site-directed mutagenesis of Cys-80, -298, and -303. J Biol Chem. 1992 Dec 5;267(34):24833–24840. [PubMed] [Google Scholar]
- Petrash J. M., Srivastava S. K. Purification and properties of human liver aldehyde reductases. Biochim Biophys Acta. 1982 Sep 22;707(1):105–114. doi: 10.1016/0167-4838(82)90402-2. [DOI] [PubMed] [Google Scholar]
- Qin K. N., New M. I., Cheng K. C. Molecular cloning of multiple cDNAs encoding human enzymes structurally related to 3 alpha-hydroxysteroid dehydrogenase. J Steroid Biochem Mol Biol. 1993 Dec;46(6):673–679. doi: 10.1016/0960-0760(93)90308-j. [DOI] [PubMed] [Google Scholar]
- Robinson B., Hunsaker L. A., Stangebye L. A., Vander Jagt D. L. Aldose and aldehyde reductases from human kidney cortex and medulla. Biochim Biophys Acta. 1993 Dec 8;1203(2):260–266. doi: 10.1016/0167-4838(93)90092-6. [DOI] [PubMed] [Google Scholar]
- Ruepp B., Bohren K. M., Gabbay K. H. Characterization of the osmotic response element of the human aldose reductase gene promoter. Proc Natl Acad Sci U S A. 1996 Aug 6;93(16):8624–8629. doi: 10.1073/pnas.93.16.8624. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sawada H., Hara A., Nakayama T., Kato F. Reductases for aromatic aldehydes and ketones from rabbit liver. Purification and characterization. J Biochem. 1980 Apr;87(4):1153–1165. [PubMed] [Google Scholar]
- Sherratt P. J., Pulford D. J., Harrison D. J., Green T., Hayes J. D. Evidence that human class Theta glutathione S-transferase T1-1 can catalyse the activation of dichloromethane, a liver and lung carcinogen in the mouse. Comparison of the tissue distribution of GST T1-1 with that of classes Alpha, Mu and Pi GST in human. Biochem J. 1997 Sep 15;326(Pt 3):837–846. doi: 10.1042/bj3260837. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Smardo F. L., Jr, Burg M. B., Garcia-Perez A. Kidney aldose reductase gene transcription is osmotically regulated. Am J Physiol. 1992 Mar;262(3 Pt 1):C776–C782. doi: 10.1152/ajpcell.1992.262.3.C776. [DOI] [PubMed] [Google Scholar]
- Smithgall T. E., Harvey R. G., Penning T. M. Regio- and stereospecificity of homogeneous 3 alpha-hydroxysteroid-dihydrodiol dehydrogenase for trans-dihydrodiol metabolites of polycyclic aromatic hydrocarbons. J Biol Chem. 1986 May 15;261(14):6184–6191. [PubMed] [Google Scholar]
- Spycher S. E., Tabataba-Vakili S., O'Donnell V. B., Palomba L., Azzi A. Aldose reductase induction: a novel response to oxidative stress of smooth muscle cells. FASEB J. 1997 Feb;11(2):181–188. doi: 10.1096/fasebj.11.2.9039961. [DOI] [PubMed] [Google Scholar]
- Stadtman E. R., Berlett B. S. Reactive oxygen-mediated protein oxidation in aging and disease. Chem Res Toxicol. 1997 May;10(5):485–494. doi: 10.1021/tx960133r. [DOI] [PubMed] [Google Scholar]
- Stolz A., Hammond L., Lou H., Takikawa H., Ronk M., Shively J. E. cDNA cloning and expression of the human hepatic bile acid-binding protein. A member of the monomeric reductase gene family. J Biol Chem. 1993 May 15;268(14):10448–10457. [PubMed] [Google Scholar]
- Tomlinson D. R., Stevens E. J., Diemel L. T. Aldose reductase inhibitors and their potential for the treatment of diabetic complications. Trends Pharmacol Sci. 1994 Aug;15(8):293–297. doi: 10.1016/0165-6147(94)90010-8. [DOI] [PubMed] [Google Scholar]
- Tulsiani D. R., Touster Resolution and partial characterization of two aldehyde reductases of mammalian liver. J Biol Chem. 1977 Apr 25;252(8):2545–2550. [PubMed] [Google Scholar]
- Vander Jagt D. L., Hunsaker L. A., Robinson B., Stangebye L. A., Deck L. M. Aldehyde and aldose reductases from human placenta. Heterogeneous expression of multiple enzyme forms. J Biol Chem. 1990 Jul 5;265(19):10912–10918. [PubMed] [Google Scholar]
- Vander Jagt D. L., Kolb N. S., Vander Jagt T. J., Chino J., Martinez F. J., Hunsaker L. A., Royer R. E. Substrate specificity of human aldose reductase: identification of 4-hydroxynonenal as an endogenous substrate. Biochim Biophys Acta. 1995 Jun 12;1249(2):117–126. doi: 10.1016/0167-4838(95)00021-l. [DOI] [PubMed] [Google Scholar]
- Vander Jagt D. L., Robinson B., Taylor K. K., Hunsaker L. A. Reduction of trioses by NADPH-dependent aldo-keto reductases. Aldose reductase, methylglyoxal, and diabetic complications. J Biol Chem. 1992 Mar 5;267(7):4364–4369. [PubMed] [Google Scholar]
- Wermuth B. Human carbonyl reductases. Prog Clin Biol Res. 1982;114:261–274. [PubMed] [Google Scholar]
- Wermuth B., Münch J. D., von Wartburg J. P. Purification and properties of NADPH-dependent aldehyde reductase from human liver. J Biol Chem. 1977 Jun 10;252(11):3821–3828. [PubMed] [Google Scholar]
- Winters C. J., Molowa D. T., Guzelian P. S. Isolation and characterization of cloned cDNAs encoding human liver chlordecone reductase. Biochemistry. 1990 Jan 30;29(4):1080–1087. doi: 10.1021/bi00456a034. [DOI] [PubMed] [Google Scholar]
- Wirth H. P., Wermuth B. Immunohistochemical localisation of aldehyde and aldose reductase in human tissues. Prog Clin Biol Res. 1985;174:231–239. [PubMed] [Google Scholar]
- Wiseman H., Halliwell B. Damage to DNA by reactive oxygen and nitrogen species: role in inflammatory disease and progression to cancer. Biochem J. 1996 Jan 1;313(Pt 1):17–29. doi: 10.1042/bj3130017. [DOI] [PMC free article] [PubMed] [Google Scholar]
- von Wartburg J. P., Wermuth B. Aldehyde reductase from human tissues. Methods Enzymol. 1982;89(Pt 500):506–513. doi: 10.1016/s0076-6879(82)89087-3. [DOI] [PubMed] [Google Scholar]