Abstract
High levels of bile acids in the colon may correlate with an increased risk of colon cancer, but the underlying mechanisms are not known. Proteoglycan structures have been shown to change when human colon cells differentiate in vitro. The expression of [(35)S]sulphated molecules was used as a phenotypic marker to study the effects of bile acids on the human-colon-carcinoma cell line CaCo-2. [(35)S]sulphated compounds were isolated from the medium of cell fractions of cells metabolically labelled with [(35)S]sulphate in the absence and presence of cholic acid, deoxycholic acid, chenodeoxycholic acid and lithocholic acid (LA). Labelled molecules were analysed by gel chromatography, HPLC and SDS/PAGE in combination with chemical and enzymic methods. The expression of (35)S-labelled proteoglycans was not affected by any of the bile acids tested. However, the level of sulphated metabolites increased 7-18-fold in different experiments during a 22 h labelling period in the presence of an LA concentration of 10 microg/ml (26.6 nmol/ml) compared with controls. Further analyses showed that this was due, at least in part, to the sulphation of LA itself. This sulphation of LA was a rapid process followed by secretion back to the medium. Brefeldin A did not reduce the sulphation of LA, indicating that this conversion takes place in the cytosol, rather than in the Golgi apparatus of the CaCo-2 cells. LA in colon may be sulphated efficiently by the colonocytes to reduce the toxic effects of this particular bile acid. Sulphation may possibly be an important protective mechanism in the colon.
Full Text
The Full Text of this article is available as a PDF (163.9 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bazzoli F., Fromm H., Sarva R. P., Sembrat R. F., Ceryak S. Comparative formation of lithocholic acid from chenodeoxycholic and ursodeoxycholic acids in the colon. Gastroenterology. 1982 Oct;83(4):753–760. [PubMed] [Google Scholar]
- Chaplin M. F. Bile acids, fibre and colon cancer: the story unfolds. J R Soc Health. 1998 Feb;118(1):53–61. doi: 10.1177/146642409811800111. [DOI] [PubMed] [Google Scholar]
- Craven P. A., Pfanstiel J., DeRubertis F. R. Role of activation of protein kinase C in the stimulation of colonic epithelial proliferation and reactive oxygen formation by bile acids. J Clin Invest. 1987 Feb;79(2):532–541. doi: 10.1172/JCI112844. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Donovan J. M., Yousef I. M., Carey M. C. Pan-sulfation of bile salts markedly increases hydrophilicity and essentially abolishes self- and hetero-association with lecithin. Biochim Biophys Acta. 1993 Aug 4;1182(1):37–45. doi: 10.1016/0925-4439(93)90150-y. [DOI] [PubMed] [Google Scholar]
- Garner C. M., Mills C. O., Elias E., Neuberger J. M. The effect of bile salts on human vascular endothelial cells. Biochim Biophys Acta. 1991 Jan 10;1091(1):41–45. doi: 10.1016/0167-4889(91)90219-n. [DOI] [PubMed] [Google Scholar]
- Govers M. J., Termont D. S., Lapré J. A., Kleibeuker J. H., Vonk R. J., Van der Meer R. Calcium in milk products precipitates intestinal fatty acids and secondary bile acids and thus inhibits colonic cytotoxicity in humans. Cancer Res. 1996 Jul 15;56(14):3270–3275. [PubMed] [Google Scholar]
- Habuchi O., Matsui Y., Kotoya Y., Aoyama Y., Yasuda Y., Noda M. Purification of chondroitin 6-sulfotransferase secreted from cultured chick embryo chondrocytes. J Biol Chem. 1993 Oct 15;268(29):21968–21974. [PubMed] [Google Scholar]
- Hirano F., Tanada H., Makino Y., Okamoto K., Hiramoto M., Handa H., Makino I. Induction of the transcription factor AP-1 in cultured human colon adenocarcinoma cells following exposure to bile acids. Carcinogenesis. 1996 Mar;17(3):427–433. doi: 10.1093/carcin/17.3.427. [DOI] [PubMed] [Google Scholar]
- Hohmann H. P., Gerisch G., Lee R. W., Huttner W. B. Cell-free sulfation of the contact site A glycoprotein of Dictyostelium discoideum and of a partially glycosylated precursor. J Biol Chem. 1985 Nov 5;260(25):13869–13878. [PubMed] [Google Scholar]
- Iozzo R. V. Presence of unsulfated heparan chains on the heparan sulfate proteoglycan of human colon carcinoma cells. Implications for heparan sulfate proteoglycan biosynthesis. J Biol Chem. 1989 Feb 15;264(5):2690–2699. [PubMed] [Google Scholar]
- Jayson G. C., Lyon M., Paraskeva C., Turnbull J. E., Deakin J. A., Gallagher J. T. Heparan sulfate undergoes specific structural changes during the progression from human colon adenoma to carcinoma in vitro. J Biol Chem. 1998 Jan 2;273(1):51–57. doi: 10.1074/jbc.273.1.51. [DOI] [PubMed] [Google Scholar]
- Kanda T., Niot I., Foucaud L., Fujii H., Bernard A., Ono T., Besnard P. Effect of bile on the intestinal bile-acid binding protein (I-BABP) expression. In vitro and in vivo studies. FEBS Lett. 1996 Apr 15;384(2):131–134. doi: 10.1016/0014-5793(96)00291-8. [DOI] [PubMed] [Google Scholar]
- Kishida T., Taguchi F., Feng L., Tatsuguchi A., Sato J., Fujimori S., Tachikawa H., Tamagawa Y., Yoshida Y., Kobayashi M. Analysis of bile acids in colon residual liquid or fecal material in patients with colorectal neoplasia and control subjects. J Gastroenterol. 1997 Jun;32(3):306–311. doi: 10.1007/BF02934485. [DOI] [PubMed] [Google Scholar]
- Klaassen C. D., Boles J. W. Sulfation and sulfotransferases 5: the importance of 3'-phosphoadenosine 5'-phosphosulfate (PAPS) in the regulation of sulfation. FASEB J. 1997 May;11(6):404–418. doi: 10.1096/fasebj.11.6.9194521. [DOI] [PubMed] [Google Scholar]
- Klausner R. D., Donaldson J. G., Lippincott-Schwartz J. Brefeldin A: insights into the control of membrane traffic and organelle structure. J Cell Biol. 1992 Mar;116(5):1071–1080. doi: 10.1083/jcb.116.5.1071. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Latta R. K., Fiander H., Ross N. W., Simpson C., Schneider H. Toxicity of bile acids to colon cancer cell lines. Cancer Lett. 1993 Jul 16;70(3):167–173. doi: 10.1016/0304-3835(93)90227-z. [DOI] [PubMed] [Google Scholar]
- Lupton J. R., Steinbach G., Chang W. C., O'Brien B. C., Wiese S., Stoltzfus C. L., Glober G. A., Wargovich M. J., McPherson R. S., Winn R. J. Calcium supplementation modifies the relative amounts of bile acids in bile and affects key aspects of human colon physiology. J Nutr. 1996 May;126(5):1421–1428. doi: 10.1093/jn/126.5.1421. [DOI] [PubMed] [Google Scholar]
- Nieuw Amerongen A. V., Bolscher J. G., Bloemena E., Veerman E. C. Sulfomucins in the human body. Biol Chem. 1998 Jan;379(1):1–18. doi: 10.1515/bchm.1998.379.1.1. [DOI] [PubMed] [Google Scholar]
- Owen R. W., Thompson M. H., Hill M. J., Wilpart M., Mainguet P., Roberfroid M. The importance of the ratio of lithocholic to deoxycholic acid in large bowel carcinogenesis. Nutr Cancer. 1987;9(2-3):67–71. doi: 10.1080/01635588709513913. [DOI] [PubMed] [Google Scholar]
- Pongracz J., Clark P., Neoptolemos J. P., Lord J. M. Expression of protein kinase C isoenzymes in colorectal cancer tissue and their differential activation by different bile acids. Int J Cancer. 1995 Mar 29;61(1):35–39. doi: 10.1002/ijc.2910610107. [DOI] [PubMed] [Google Scholar]
- ROSENFELD R. S., HELLMAN L. Excretion of steroid acids in man. Arch Biochem Biophys. 1962 May;97:406–410. doi: 10.1016/0003-9861(62)90097-8. [DOI] [PubMed] [Google Scholar]
- Reddy B. S., Engle A., Simi B., Goldman M. Effect of dietary fiber on colonic bacterial enzymes and bile acids in relation to colon cancer. Gastroenterology. 1992 May;102(5):1475–1482. doi: 10.1016/0016-5085(92)91704-8. [DOI] [PubMed] [Google Scholar]
- Salmivirta M., Safaiyan F., Prydz K., Andresen M. S., Aryan M., Kolset S. O. Differentiation-associated modulation of heparan sulfate structure and function in CaCo-2 colon carcinoma cells. Glycobiology. 1998 Oct;8(10):1029–1036. doi: 10.1093/glycob/8.10.1029. [DOI] [PubMed] [Google Scholar]
- Shekels L. L., Lyftogt C. T., Ho S. B. Bile acid-induced alterations of mucin production in differentiated human colon cancer cell lines. Int J Biochem Cell Biol. 1996 Feb;28(2):193–201. doi: 10.1016/1357-2725(95)00125-5. [DOI] [PubMed] [Google Scholar]
- Shively J. E., Conrad H. E. Formation of anhydrosugars in the chemical depolymerization of heparin. Biochemistry. 1976 Sep 7;15(18):3932–3942. doi: 10.1021/bi00663a005. [DOI] [PubMed] [Google Scholar]
- Simon-Assmann P., Kedinger M., De Arcangelis A., Rousseau V., Simo P. Extracellular matrix components in intestinal development. Experientia. 1995 Sep 29;51(9-10):883–900. doi: 10.1007/BF01921739. [DOI] [PubMed] [Google Scholar]
- Spigelman A. D., Owen R. W., Hill M. J., Phillips R. K. Biliary bile acid profiles in familial adenomatous polyposis. Br J Surg. 1991 Mar;78(3):321–325. doi: 10.1002/bjs.1800780318. [DOI] [PubMed] [Google Scholar]
- Spiro R. C., Freeze H. H., Sampath D., Garcia J. A. Uncoupling of chondroitin sulfate glycosaminoglycan synthesis by brefeldin A. J Cell Biol. 1991 Dec;115(5):1463–1473. doi: 10.1083/jcb.115.5.1463. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stadler J., Yeung K. S., Furrer R., Marcon N., Himal H. S., Bruce W. R. Proliferative activity of rectal mucosa and soluble fecal bile acids in patients with normal colons and in patients with colonic polyps or cancer. Cancer Lett. 1988 Jan;38(3):315–320. doi: 10.1016/0304-3835(88)90023-7. [DOI] [PubMed] [Google Scholar]
- Takikawa H., Sekiya Y., Yamanaka M., Sugiyama Y. Binding of lithocholate and its glucuronide and sulfate by human serum albumin. Biochim Biophys Acta. 1995 Jun 9;1244(2-3):277–282. doi: 10.1016/0304-4165(95)00023-5. [DOI] [PubMed] [Google Scholar]
- Uhlin-Hansen L., Yanagishita M. Differential effect of brefeldin A on the biosynthesis of heparan sulfate and chondroitin/dermatan sulfate proteoglycans in rat ovarian granulosa cells in culture. J Biol Chem. 1993 Aug 15;268(23):17370–17376. [PubMed] [Google Scholar]
- Weinshilboum R. M., Otterness D. M., Aksoy I. A., Wood T. C., Her C., Raftogianis R. B. Sulfation and sulfotransferases 1: Sulfotransferase molecular biology: cDNAs and genes. FASEB J. 1997 Jan;11(1):3–14. [PubMed] [Google Scholar]
- Willett W. The search for the causes of breast and colon cancer. Nature. 1989 Mar 30;338(6214):389–394. doi: 10.1038/338389a0. [DOI] [PubMed] [Google Scholar]