Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1999 Nov 1;343(Pt 3):557–562.

A method for S- and O-palmitoylation of peptides: synthesis of pulmonary surfactant protein-C models.

E Yousefi-Salakdeh 1, J Johansson 1, R Strömberg 1
PMCID: PMC1220586  PMID: 10527933

Abstract

A method for O- and S-palmitoylation of non-protected peptides has been developed. The peptides are treated with excess of palmitoyl chloride in 100% trifluoroacetic acid for 10 min at room temperature. The acidic conditions prevent acylation of amino groups, which is only significant after prolonged treatment (hours to days). The tripeptides Gly-Cys-Phe and Gly-Ser-Phe were converted into the respective S- and O-palmitoylated compounds, and the hydrophobic pulmonary surfactant protein-C model peptides, LRIPCCPVNLKRLLVVV [SP-C(1-17)] and FGIPSSPVLKRLLILLLLLLLILLLILGALLMGL [SP-C(Leu)] were converted into their respective S,S- and O,O-dipalmitoylated peptides. The reactions were virtually quantitative, and the palmitoylated peptides were isolated in about 75-80% yield after reversed-phase HPLC purification. CD spectroscopy showed that S, S-dipalmitoylation of SP-C(1-17) affects the peptide secondary structure (substantial increase in the alpha-helix content) in dodecylphosphocholine micelles.

Full Text

The Full Text of this article is available as a PDF (141.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bañ M. C., Jackson C. S., Magee A. I. Pseudo-enzymatic S-acylation of a myristoylated yes protein tyrosine kinase peptide in vitro may reflect non-enzymatic S-acylation in vivo. Biochem J. 1998 Mar 1;330(Pt 2):723–731. doi: 10.1042/bj3300723. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Creuwels L. A., Demel R. A., van Golde L. M., Benson B. J., Haagsman H. P. Effect of acylation on structure and function of surfactant protein C at the air-liquid interface. J Biol Chem. 1993 Dec 15;268(35):26752–26758. [PubMed] [Google Scholar]
  3. Cronan J. E., Jr, Klages A. L. Chemical synthesis of acyl thioesters of acyl carrier protein with native structure. Proc Natl Acad Sci U S A. 1981 Sep;78(9):5440–5444. doi: 10.1073/pnas.78.9.5440. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Curstedt T., Johansson J., Persson P., Eklund A., Robertson B., Löwenadler B., Jörnvall H. Hydrophobic surfactant-associated polypeptides: SP-C is a lipopeptide with two palmitoylated cysteine residues, whereas SP-B lacks covalently linked fatty acyl groups. Proc Natl Acad Sci U S A. 1990 Apr;87(8):2985–2989. doi: 10.1073/pnas.87.8.2985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Dunphy J. T., Greentree W. K., Manahan C. L., Linder M. E. G-protein palmitoyltransferase activity is enriched in plasma membranes. J Biol Chem. 1996 Mar 22;271(12):7154–7159. doi: 10.1074/jbc.271.12.7154. [DOI] [PubMed] [Google Scholar]
  6. Gustafsson M., Curstedt T., Jörnvall H., Johansson J. Reverse-phase HPLC of the hydrophobic pulmonary surfactant proteins: detection of a surfactant protein C isoform containing Nepsilon-palmitoyl-lysine. Biochem J. 1997 Sep 15;326(Pt 3):799–806. doi: 10.1042/bj3260799. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gutte B., Merrifield R. B. The synthesis of ribonuclease A. J Biol Chem. 1971 Mar 25;246(6):1922–1941. [PubMed] [Google Scholar]
  8. Hackett M., Guo L., Shabanowitz J., Hunt D. F., Hewlett E. L. Internal lysine palmitoylation in adenylate cyclase toxin from Bordetella pertussis. Science. 1994 Oct 21;266(5184):433–435. doi: 10.1126/science.7939682. [DOI] [PubMed] [Google Scholar]
  9. Johansson J., Szyperski T., Wüthrich K. Pulmonary surfactant-associated polypeptide SP-C in lipid micelles: CD studies of intact SP-C and NMR secondary structure determination of depalmitoyl-SP-C(1-17). FEBS Lett. 1995 Apr 10;362(3):261–265. doi: 10.1016/0014-5793(95)00216-v. [DOI] [PubMed] [Google Scholar]
  10. König W., Geiger R. Eine neue Methode zur Synthese von Peptiden: Aktivierung der Carboxylgruppe mit Dicyclohexylcarbodiimid und 3-Hydroxy-4-oxo-3.4-dihydro-1.2.3-benzotriazin. Chem Ber. 1970 Jul;103(7):2034–2040. doi: 10.1002/cber.19701030705. [DOI] [PubMed] [Google Scholar]
  11. König W., Geiger R. Racemisierung bei Peptidsynthesen. Chem Ber. 1970 Jul;103(7):2024–2033. doi: 10.1002/cber.19701030704. [DOI] [PubMed] [Google Scholar]
  12. Larsson E., Lüning B., Reed J., Krog-Jensen C. Solid phase synthesis of two phosphorylated peptides related to casein using allyl phosphate protection, and their CD spectra. Acta Chem Scand. 1996 Nov;50(11):1009–1012. doi: 10.3891/acta.chem.scand.50-1009. [DOI] [PubMed] [Google Scholar]
  13. Nilsson G., Gustafsson M., Vandenbussche G., Veldhuizen E., Griffiths W. J., Sjövall J., Haagsman H. P., Ruysschaert J. M., Robertson B., Curstedt T. Synthetic peptide-containing surfactants--evaluation of transmembrane versus amphipathic helices and surfactant protein C poly-valyl to poly-leucyl substitution. Eur J Biochem. 1998 Jul 1;255(1):116–124. doi: 10.1046/j.1432-1327.1998.2550116.x. [DOI] [PubMed] [Google Scholar]
  14. O'Brien P. J., St Jules R. S., Reddy T. S., Bazan N. G., Zatz M. Acylation of disc membrane rhodopsin may be nonenzymatic. J Biol Chem. 1987 Apr 15;262(11):5210–5215. [PubMed] [Google Scholar]
  15. Omary M. B., Trowbridge I. S. Biosynthesis of the human transferrin receptor in cultured cells. J Biol Chem. 1981 Dec 25;256(24):12888–12892. [PubMed] [Google Scholar]
  16. Qanbar R., Cheng S., Possmayer F., Schürch S. Role of the palmitoylation of surfactant-associated protein C in surfactant film formation and stability. Am J Physiol. 1996 Oct;271(4 Pt 1):L572–L580. doi: 10.1152/ajplung.1996.271.4.L572. [DOI] [PubMed] [Google Scholar]
  17. Sarin V. K., Kent S. B., Tam J. P., Merrifield R. B. Quantitative monitoring of solid-phase peptide synthesis by the ninhydrin reaction. Anal Biochem. 1981 Oct;117(1):147–157. doi: 10.1016/0003-2697(81)90704-1. [DOI] [PubMed] [Google Scholar]
  18. Shiffer K., Hawgood S., Haagsman H. P., Benson B., Clements J. A., Goerke J. Lung surfactant proteins, SP-B and SP-C, alter the thermodynamic properties of phospholipid membranes: a differential calorimetry study. Biochemistry. 1993 Jan 19;32(2):590–597. doi: 10.1021/bi00053a026. [DOI] [PubMed] [Google Scholar]
  19. Stults J. T., Griffin P. R., Lesikar D. D., Naidu A., Moffat B., Benson B. J. Lung surfactant protein SP-C from human, bovine, and canine sources contains palmityl cysteine thioester linkages. Am J Physiol. 1991 Aug;261(2 Pt 1):L118–L125. doi: 10.1152/ajplung.1991.261.2.L118. [DOI] [PubMed] [Google Scholar]
  20. Szyperski T., Vandenbussche G., Curstedt T., Ruysschaert J. M., Wüthrich K., Johansson J. Pulmonary surfactant-associated polypeptide C in a mixed organic solvent transforms from a monomeric alpha-helical state into insoluble beta-sheet aggregates. Protein Sci. 1998 Dec;7(12):2533–2540. doi: 10.1002/pro.5560071206. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Vandenbussche G., Clercx A., Curstedt T., Johansson J., Jörnvall H., Ruysschaert J. M. Structure and orientation of the surfactant-associated protein C in a lipid bilayer. Eur J Biochem. 1992 Jan 15;203(1-2):201–209. doi: 10.1111/j.1432-1033.1992.tb19848.x. [DOI] [PubMed] [Google Scholar]
  22. Wang Z., Gurel O., Baatz J. E., Notter R. H. Acylation of pulmonary surfactant protein-C is required for its optimal surface active interactions with phospholipids. J Biol Chem. 1996 Aug 9;271(32):19104–19109. doi: 10.1074/jbc.271.32.19104. [DOI] [PubMed] [Google Scholar]
  23. Wedegaertner P. B., Wilson P. T., Bourne H. R. Lipid modifications of trimeric G proteins. J Biol Chem. 1995 Jan 13;270(2):503–506. doi: 10.1074/jbc.270.2.503. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES