Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1999 Nov 1;343(Pt 3):563–570.

An extremely thermostable aldolase from Sulfolobus solfataricus with specificity for non-phosphorylated substrates.

C L Buchanan 1, H Connaris 1, M J Danson 1, C D Reeve 1, D W Hough 1
PMCID: PMC1220587  PMID: 10527934

Abstract

Sulfolobus solfataricus is a hyperthermophilic archaeon growing optimally at 80-85 degrees C. It metabolizes glucose via a novel non-phosphorylated Entner-Doudoroff pathway, in which the reversible C(6) to C(3) aldol cleavage is catalysed by 2-keto-3-deoxygluconate aldolase (KDG-aldolase), generating pyruvate and glyceraldehyde. Given the ability of such a hyperstable enzyme to catalyse carbon-carbon-bond synthesis with non-phosphorylated metabolites, we report here the cloning and sequencing of the S. solfataricus gene encoding KDG-aldolase, and its expression in Escherichia coli to give fully active enzyme. The recombinant enzyme was purified in a simple two-step procedure, and shown to possess kinetic properties indistinguishable from the enzyme purified from S. solfataricus cells. The KDG-aldolase is a thermostable tetrameric protein with a half-life at 100 degrees C of 2.5 h, and is equally active with both d- and l-glyceraldehyde. It exhibits sequence similarity to the N-acetylneuraminate lyase superfamily of Schiff-base-dependent aldolases, dehydratases and decarboxylases, and evidence is presented for a similar catalytic mechanism for the archaeal enzyme by substrate-dependent inactivation by reduction with NaBH(4).

Full Text

The Full Text of this article is available as a PDF (172.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aisaka K., Igarashi A., Yamaguchi K., Uwajima T. Purification, crystallization and characterization of N-acetylneuraminate lyase from Escherichia coli. Biochem J. 1991 Jun 1;276(Pt 2):541–546. doi: 10.1042/bj2760541. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. Basic local alignment search tool. J Mol Biol. 1990 Oct 5;215(3):403–410. doi: 10.1016/S0022-2836(05)80360-2. [DOI] [PubMed] [Google Scholar]
  3. Babbitt P. C., Gerlt J. A. Understanding enzyme superfamilies. Chemistry As the fundamental determinant in the evolution of new catalytic activities. J Biol Chem. 1997 Dec 5;272(49):30591–30594. doi: 10.1074/jbc.272.49.30591. [DOI] [PubMed] [Google Scholar]
  4. Connaris H., West S. M., Hough D. W., Danson M. J. Cloning and overexpression in Escherichia coli of the gene encoding citrate synthase from the hyperthermophilic Archaeon Sulfolobus solfataricus. Extremophiles. 1998 May;2(2):61–66. doi: 10.1007/s007920050043. [DOI] [PubMed] [Google Scholar]
  5. De Rosa M., Gambacorta A., Nicolaus B., Giardina P., Poerio E., Buonocore V. Glucose metabolism in the extreme thermoacidophilic archaebacterium Sulfolobus solfataricus. Biochem J. 1984 Dec 1;224(2):407–414. doi: 10.1042/bj2240407. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Eisenthal R., Cornish-Bowden A. The direct linear plot. A new graphical procedure for estimating enzyme kinetic parameters. Biochem J. 1974 Jun;139(3):715–720. doi: 10.1042/bj1390715. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Fessner W. D. Enzyme mediated C-C bond formation. Curr Opin Chem Biol. 1998 Feb;2(1):85–97. doi: 10.1016/s1367-5931(98)80040-9. [DOI] [PubMed] [Google Scholar]
  8. Gottschalk G., Bender R. D-Gluconate dehydratase from Clostridium pasteurianum. Methods Enzymol. 1982;90(Pt E):283–287. doi: 10.1016/s0076-6879(82)90141-0. [DOI] [PubMed] [Google Scholar]
  9. Grogan D. W. Phenotypic characterization of the archaebacterial genus Sulfolobus: comparison of five wild-type strains. J Bacteriol. 1989 Dec;171(12):6710–6719. doi: 10.1128/jb.171.12.6710-6719.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Higgins D. G., Sharp P. M. CLUSTAL: a package for performing multiple sequence alignment on a microcomputer. Gene. 1988 Dec 15;73(1):237–244. doi: 10.1016/0378-1119(88)90330-7. [DOI] [PubMed] [Google Scholar]
  11. Hough D. W., Danson M. J. Extremozymes. Curr Opin Chem Biol. 1999 Feb;3(1):39–46. doi: 10.1016/s1367-5931(99)80008-8. [DOI] [PubMed] [Google Scholar]
  12. Izard T., Lawrence M. C., Malby R. L., Lilley G. G., Colman P. M. The three-dimensional structure of N-acetylneuraminate lyase from Escherichia coli. Structure. 1994 May 15;2(5):361–369. doi: 10.1016/s0969-2126(00)00038-1. [DOI] [PubMed] [Google Scholar]
  13. Johnson M. L., Correia J. J., Yphantis D. A., Halvorson H. R. Analysis of data from the analytical ultracentrifuge by nonlinear least-squares techniques. Biophys J. 1981 Dec;36(3):575–588. doi: 10.1016/S0006-3495(81)84753-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  15. Lawrence M. C., Barbosa J. A., Smith B. J., Hall N. E., Pilling P. A., Ooi H. C., Marcuccio S. M. Structure and mechanism of a sub-family of enzymes related to N-acetylneuraminate lyase. J Mol Biol. 1997 Feb 21;266(2):381–399. doi: 10.1006/jmbi.1996.0769. [DOI] [PubMed] [Google Scholar]
  16. Mahmoudian M., Noble D., Drake C. S., Middleton R. F., Montgomery D. S., Piercey J. E., Ramlakhan D., Todd M., Dawson M. J. An efficient process for production of N-acetylneuraminic acid using N-acetylneuraminic acid aldolase. Enzyme Microb Technol. 1997 Apr;20(5):393–400. doi: 10.1016/s0141-0229(96)00180-9. [DOI] [PubMed] [Google Scholar]
  17. Mavridis I. M., Hatada M. H., Tulinsky A., Lebioda L. Structure of 2-keto-3-deoxy-6-phosphogluconate aldolase at 2 . 8 A resolution. J Mol Biol. 1982 Dec 5;162(2):419–444. doi: 10.1016/0022-2836(82)90536-8. [DOI] [PubMed] [Google Scholar]
  18. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Selig M., Xavier K. B., Santos H., Schönheit P. Comparative analysis of Embden-Meyerhof and Entner-Doudoroff glycolytic pathways in hyperthermophilic archaea and the bacterium Thermotoga. Arch Microbiol. 1997 Apr;167(4):217–232. doi: 10.1007/BF03356097. [DOI] [PubMed] [Google Scholar]
  20. Skoza L., Mohos S. Stable thiobarbituric acid chromophore with dimethyl sulphoxide. Application to sialic acid assay in analytical de-O-acetylation. Biochem J. 1976 Dec 1;159(3):457–462. doi: 10.1042/bj1590457. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Takayama S., McGarvey G. J., Wong C. H. Microbial aldolases and transketolases: new biocatalytic approaches to simple and complex sugars. Annu Rev Microbiol. 1997;51:285–310. doi: 10.1146/annurev.micro.51.1.285. [DOI] [PubMed] [Google Scholar]
  22. Thomas T. M., Scopes R. K. The effects of temperature on the kinetics and stability of mesophilic and thermophilic 3-phosphoglycerate kinases. Biochem J. 1998 Mar 15;330(Pt 3):1087–1095. doi: 10.1042/bj3301087. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Uchida Y., Tsukada Y., Sugimori T. Purification and properties of N-acetylneuraminate lyase from Escherichia coli. J Biochem. 1984 Aug;96(2):507–522. doi: 10.1093/oxfordjournals.jbchem.a134863. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES