Abstract
The reinvestigation of the kinetics of myeloperoxidase (MPO) activity with the use of NADPH as a probe has allowed us to determine the effects of H(2)O(2), Cl(-) ion and pH on the MPO-dependent production of HOCl. The chlorination rate of NADPH did not depend on NADPH concentration and was entirely related to the rate of production of HOCl by MPO. The overall oxidation of NADPH occurred similarly in the absence of O(2) and was insensitive to scavengers of the superoxide radical anion. Experiments performed on the direct oxidation of NADPH by MPO in the presence and the absence of H(2)O(2) showed that neither the rate nor the stoichiometry of the reaction could interfere in the NADPH oxidation process involved in the steady-state chlorination cycle. The oxidation of NADPH was characterized by a decrease in the A(339) of the reduced nicotinamide with the concomitant appearance of a new chromophore with absorbance maximum at 274 nm, characterized by isosbestic points at 300 and 238 nm. The reaction product did not possess any enzymic properties with dehydrogenases and led to a metabolite other than NADP(+). Its amount accounted for a stoichiometric conversion of H(2)O(2) into HOCl. Analyses of the NADPH reaction allowed the determination of both kinetic (k(cat) and K(m)) and thermodynamic (K(d)) parameters. When the values of kinetic parameters were compared with previously published ones, the main discrepancy was found with data obtained with the chlorination of monochlorodimedon and a better agreement with diethanolchloramine formation or H(2)O(2) consumption. Variations in the extent of NADPH oxidation with Cl(-) concentration enabled us to determine the dissociation constant for the enzyme-Cl(-) complex. In the course of titration studies, the spectral properties of NADPH reacting with either HOCl or the MPO/H(2)O(2)/Cl(-) system were quantitatively similar in terms of stoichiometry and absorbance coefficient and thus led to identical chlorinated products. However, no spectral modification occurred with NADP(+) and adenine nucleotide analogues under the same conditions. A quantitative comparison of difference spectra obtained with NADPH and NMNH indicated that chlorination occurred on the nicotinamide part of the molecule.
Full Text
The Full Text of this article is available as a PDF (205.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Andrews P. C., Krinsky N. I. A kinetic analysis of the interaction of human myeloperoxidase with hydrogen peroxide, chloride ions, and protons. J Biol Chem. 1982 Nov 25;257(22):13240–13245. [PubMed] [Google Scholar]
- BEERS R. F., Jr, SIZER I. W. A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J Biol Chem. 1952 Mar;195(1):133–140. [PubMed] [Google Scholar]
- Bakkenist A. R., Wever R., Vulsma T., Plat H., van Gelder B. F. Isolation procedure and some properties of myeloperoxidase from human leucocytes. Biochim Biophys Acta. 1978 May 11;524(1):45–54. doi: 10.1016/0005-2744(78)90101-8. [DOI] [PubMed] [Google Scholar]
- Bakkenist A. R., de Boer J. E., Plat H., Wever R. The halide complexes of myeloperoxidase and the mechanism of the halogenation reactions. Biochim Biophys Acta. 1980 Jun 13;613(2):337–348. doi: 10.1016/0005-2744(80)90088-1. [DOI] [PubMed] [Google Scholar]
- Bernofsky C. Nucleotide chloramines and neutrophil-mediated cytotoxicity. FASEB J. 1991 Mar 1;5(3):295–300. doi: 10.1096/fasebj.5.3.1848195. [DOI] [PubMed] [Google Scholar]
- Bernofsky C., Wanda S. Y. Formation of reduced nicotinamide adenine dinucleotide peroxide. J Biol Chem. 1982 Jun 25;257(12):6809–6817. [PubMed] [Google Scholar]
- Bolscher B. G., Wever R. A kinetic study of the reaction between human myeloperoxidase, hydroperoxides and cyanide. Inhibition by chloride and thiocyanate. Biochim Biophys Acta. 1984 Jul 17;788(1):1–10. doi: 10.1016/0167-4838(84)90290-5. [DOI] [PubMed] [Google Scholar]
- Bolscher B. G., Zoutberg G. R., Cuperus R. A., Wever R. Vitamin C stimulates the chlorinating activity of human myeloperoxidase. Biochim Biophys Acta. 1984 Jan 31;784(2-3):189–191. doi: 10.1016/0167-4838(84)90127-4. [DOI] [PubMed] [Google Scholar]
- Capeillère-Blandin C., Martin C., Gaggero N., Pasta P., Carrea G., Colonna S. Sulphoxidation reaction catalysed by myeloperoxidase from human leucocytes. Biochem J. 1998 Oct 1;335(Pt 1):27–33. doi: 10.1042/bj3350027. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Capeillère-Blandin C. Oxidation of guaiacol by myeloperoxidase: a two-electron-oxidized guaiacol transient species as a mediator of NADPH oxidation. Biochem J. 1998 Dec 1;336(Pt 2):395–404. doi: 10.1042/bj3360395. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chesney J. A., Mahoney J. R., Jr, Eaton J. W. A spectrophotometric assay for chlorine-containing compounds. Anal Biochem. 1991 Aug 1;196(2):262–266. doi: 10.1016/0003-2697(91)90463-4. [DOI] [PubMed] [Google Scholar]
- Ching T. L., de Jong J., Bast A. A method for screening hypochlorous acid scavengers by inhibition of the oxidation of 5-thio-2-nitrobenzoic acid: application to anti-asthmatic drugs. Anal Biochem. 1994 May 1;218(2):377–381. doi: 10.1006/abio.1994.1195. [DOI] [PubMed] [Google Scholar]
- Griffin B. W., Haddox R. Chlorination of NADH: similarities of the HOCl-supported and chloroperoxidase-catalyzed reactions. Arch Biochem Biophys. 1985 May 15;239(1):305–309. doi: 10.1016/0003-9861(85)90840-9. [DOI] [PubMed] [Google Scholar]
- Harrison J. E., Schultz J. Studies on the chlorinating activity of myeloperoxidase. J Biol Chem. 1976 Mar 10;251(5):1371–1374. [PubMed] [Google Scholar]
- Heinecke J. W., Li W., Mueller D. M., Bohrer A., Turk J. Cholesterol chlorohydrin synthesis by the myeloperoxidase-hydrogen peroxide-chloride system: potential markers for lipoproteins oxidatively damaged by phagocytes. Biochemistry. 1994 Aug 23;33(33):10127–10136. doi: 10.1021/bi00199a041. [DOI] [PubMed] [Google Scholar]
- Hoogland H., Dekker H. L., van Riel C., van Kuilenburg A., Muijsers A. O., Wever R. A steady-state study on the formation of Compounds II and III of myeloperoxidase. Biochim Biophys Acta. 1988 Aug 10;955(3):337–345. doi: 10.1016/0167-4838(88)90213-0. [DOI] [PubMed] [Google Scholar]
- Hoogland H., van Kuilenburg A., van Riel C., Muijsers A. O., Wever R. Spectral properties of myeloperoxidase compounds II and III. Biochim Biophys Acta. 1987 Nov 5;916(1):76–82. doi: 10.1016/0167-4838(87)90212-3. [DOI] [PubMed] [Google Scholar]
- KLEBANOFF S. J. Reduced pyridine nucleotides as activators of certain reactions catalyzed by peroxidase. Biochim Biophys Acta. 1960 Nov 18;44:501–509. doi: 10.1016/0006-3002(60)91604-8. [DOI] [PubMed] [Google Scholar]
- Keller R. J., Hinson J. A. Mechanism of acetaminophen-stimulated NADPH oxidation catalyzed by the peroxidase-H2O2 system. Drug Metab Dispos. 1991 Jan-Feb;19(1):184–187. [PubMed] [Google Scholar]
- Kettle A. J. Neutrophils convert tyrosyl residues in albumin to chlorotyrosine. FEBS Lett. 1996 Jan 22;379(1):103–106. doi: 10.1016/0014-5793(95)01494-2. [DOI] [PubMed] [Google Scholar]
- Kettle A. J., Winterbourn C. C. Influence of superoxide on myeloperoxidase kinetics measured with a hydrogen peroxide electrode. Biochem J. 1989 Nov 1;263(3):823–828. doi: 10.1042/bj2630823. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kettle A. J., Winterbourn C. C. The mechanism of myeloperoxidase-dependent chlorination of monochlorodimedon. Biochim Biophys Acta. 1988 Nov 23;957(2):185–191. doi: 10.1016/0167-4838(88)90271-3. [DOI] [PubMed] [Google Scholar]
- Koppenol W. H. Thermodynamic considerations on the formation of reactive species from hypochlorite, superoxide and nitrogen monoxide. Could nitrosyl chloride be produced by neutrophils and macrophages? FEBS Lett. 1994 Jun 20;347(1):5–8. doi: 10.1016/0014-5793(94)00494-3. [DOI] [PubMed] [Google Scholar]
- Land E. J., Swallow A. J. One-electron reactions in biochemical systems as studied by pulse radiolysis. IV. Oxidation of dihydronicotinamide-adenine dinucleotide. Biochim Biophys Acta. 1971 Apr 6;234(1):34–42. doi: 10.1016/0005-2728(71)90126-5. [DOI] [PubMed] [Google Scholar]
- Marquez L. A., Dunford H. B. Chlorination of taurine by myeloperoxidase. Kinetic evidence for an enzyme-bound intermediate. J Biol Chem. 1994 Mar 18;269(11):7950–7956. [PubMed] [Google Scholar]
- Marquez L. A., Dunford H. B. Kinetics of oxidation of tyrosine and dityrosine by myeloperoxidase compounds I and II. Implications for lipoprotein peroxidation studies. J Biol Chem. 1995 Dec 22;270(51):30434–30440. doi: 10.1074/jbc.270.51.30434. [DOI] [PubMed] [Google Scholar]
- Marquez L. A., Dunford H. B. Transient and steady-state kinetics of the oxidation of scopoletin by horseradish peroxidase compounds I, II and III in the presence of NADH. Eur J Biochem. 1995 Oct 1;233(1):364–371. doi: 10.1111/j.1432-1033.1995.364_1.x. [DOI] [PubMed] [Google Scholar]
- Marquez L. A., Dunford H. B., Van Wart H. Kinetic studies on the reaction of compound II of myeloperoxidase with ascorbic acid. Role of ascorbic acid in myeloperoxidase function. J Biol Chem. 1990 Apr 5;265(10):5666–5670. [PubMed] [Google Scholar]
- Marquez L. A., Huang J. T., Dunford H. B. Spectral and kinetic studies on the formation of myeloperoxidase compounds I and II: roles of hydrogen peroxide and superoxide. Biochemistry. 1994 Feb 15;33(6):1447–1454. doi: 10.1021/bi00172a022. [DOI] [PubMed] [Google Scholar]
- Michot J. L., Virion A., Deme D., De Prailaune S., Pommier J. NADPH oxidation catalyzed by the peroxidase/H2O2 system. Guaiacol-mediated and scopoletin-mediated oxidation of NADPH to NADPH+. Eur J Biochem. 1985 May 2;148(3):441–445. doi: 10.1111/j.1432-1033.1985.tb08859.x. [DOI] [PubMed] [Google Scholar]
- Miles D. W., Urry D. W., Eyring H. Evidence for an acid-catalyzed alpha,beta epimerization in pyridine nucleotides. Biochemistry. 1968 Jun;7(6):2333–2338. doi: 10.1021/bi00846a040. [DOI] [PubMed] [Google Scholar]
- Prütz W. A. Hypochlorous acid interactions with thiols, nucleotides, DNA, and other biological substrates. Arch Biochem Biophys. 1996 Aug 1;332(1):110–120. doi: 10.1006/abbi.1996.0322. [DOI] [PubMed] [Google Scholar]
- Saikumar P., Swaroop A., Kurup C. K., Ramasarma T. Competing peroxidase and oxidase reactions in scopoletin-dependent H2O2-initiated oxidation of NADH by horseradish peroxidase. Biochim Biophys Acta. 1994 Jan 11;1204(1):117–123. doi: 10.1016/0167-4838(94)90040-x. [DOI] [PubMed] [Google Scholar]
- Selvaraj R. J., Zgliczynski J. M., Paul B. B., Sbarra A. J. Chlorination or reduced nicotinamide adenine dinucleotides by myeloperoxidase: a novel bactericidal mechanism. J Reticuloendothel Soc. 1980 Jan;27(1):31–38. [PubMed] [Google Scholar]
- Sharonov B. P., Churilova I. V. Inactivation and oxidative modification of Cu,Zn superoxide dismutase by stimulated neutrophils: the appearance of new catalytically active structures. Biochem Biophys Res Commun. 1992 Dec 15;189(2):1129–1135. doi: 10.1016/0006-291x(92)92321-n. [DOI] [PubMed] [Google Scholar]
- Stelmaszyńska T., Zgliczyński J. M. Myeloperoxidase of human neutrophilic granulocytes as chlorinating enzyme. Eur J Biochem. 1974 Jun 1;45(1):305–312. doi: 10.1111/j.1432-1033.1974.tb03555.x. [DOI] [PubMed] [Google Scholar]
- Svensson B. E., Lindvall S. Myeloperoxidase-oxidase oxidation of cysteamine. Biochem J. 1988 Jan 15;249(2):521–530. doi: 10.1042/bj2490521. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Svensson B. E. Myeloperoxidase oxidation states involved in myeloperoxidase-oxidase oxidation of thiols. Biochem J. 1988 Dec 15;256(3):751–755. doi: 10.1042/bj2560751. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Takayama K., Nakano M. Mechanism of thyroxine-mediated oxidation of reduced nicotinamide adenine dinucleotide in peroxidase-H2O2 system. Biochemistry. 1977 May 3;16(9):1921–1926. doi: 10.1021/bi00628a025. [DOI] [PubMed] [Google Scholar]
- Tsan M. F. Myeloperoxidase-mediated oxidation of methionine and amino acid decarboxylation. Infect Immun. 1982 Apr;36(1):136–141. doi: 10.1128/iai.36.1.136-141.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Turkall R. M., Tsan M. F. Oxidation of glutathione by the myeloperoxidase system. J Reticuloendothel Soc. 1982 Apr;31(4):353–360. [PubMed] [Google Scholar]
- Virion A., Michot J. L., Deme D., Pommier J. NADPH oxidation catalyzed by the peroxidase/H2O2 system. Iodide-mediated oxidation of NADPH to iodinated NADP. Eur J Biochem. 1985 Apr 15;148(2):239–243. doi: 10.1111/j.1432-1033.1985.tb08831.x. [DOI] [PubMed] [Google Scholar]
- Weiss S. J., Klein R., Slivka A., Wei M. Chlorination of taurine by human neutrophils. Evidence for hypochlorous acid generation. J Clin Invest. 1982 Sep;70(3):598–607. doi: 10.1172/JCI110652. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Winterbourn C. C. Comparative reactivities of various biological compounds with myeloperoxidase-hydrogen peroxide-chloride, and similarity of the oxidant to hypochlorite. Biochim Biophys Acta. 1985 Jun 18;840(2):204–210. doi: 10.1016/0304-4165(85)90120-5. [DOI] [PubMed] [Google Scholar]
- Winterbourn C. C., van den Berg J. J., Roitman E., Kuypers F. A. Chlorohydrin formation from unsaturated fatty acids reacted with hypochlorous acid. Arch Biochem Biophys. 1992 Aug 1;296(2):547–555. doi: 10.1016/0003-9861(92)90609-z. [DOI] [PubMed] [Google Scholar]
- Yokota K., Yamazaki I. Reaction of peroxidase with reduced nicotinamide-adenine dinucleotide and reduced nicotinamide-adenine dinucleotide phosphate. Biochim Biophys Acta. 1965 Aug 24;105(2):301–312. doi: 10.1016/s0926-6593(65)80154-0. [DOI] [PubMed] [Google Scholar]
- Zgliczynski J. M., Selvaraj R. J., Paul B. B., Stelmaszynska T., Poskitt P. K., Sbarra A. J. Chlorination by the myeloperoxidase-H2O2-Cl- antimicrobial system at acid and neutral pH. Proc Soc Exp Biol Med. 1977 Mar;154(3):418–422. doi: 10.3181/00379727-154-39684. [DOI] [PubMed] [Google Scholar]
- Zuurbier K. W., Bakkenist A. R., Wever R., Muijsers A. O. The chlorinating activity of human myeloperoxidase: high initial activity at neutral pH value and activation by electron donors. Biochim Biophys Acta. 1990 Feb 9;1037(2):140–146. doi: 10.1016/0167-4838(90)90159-d. [DOI] [PubMed] [Google Scholar]
- van Dalen C. J., Whitehouse M. W., Winterbourn C. C., Kettle A. J. Thiocyanate and chloride as competing substrates for myeloperoxidase. Biochem J. 1997 Oct 15;327(Pt 2):487–492. doi: 10.1042/bj3270487. [DOI] [PMC free article] [PubMed] [Google Scholar]
- van Zyl J. M., Basson K., Kriegler A., van der Walt B. J. Mechanisms by which clofazimine and dapsone inhibit the myeloperoxidase system. A possible correlation with their anti-inflammatory properties. Biochem Pharmacol. 1991 Jul 15;42(3):599–608. doi: 10.1016/0006-2952(91)90323-w. [DOI] [PubMed] [Google Scholar]