Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1999 Nov 1;343(Pt 3):637–644.

Identification of protein kinase C phosphorylation sites in the angiotensin II (AT1A) receptor.

H Qian 1, L Pipolo 1, W G Thomas 1
PMCID: PMC1220596  PMID: 10527943

Abstract

Protein kinase C (PKC) phosphorylates the C-terminus of the type 1 angiotensin II receptor (AT(1)), although the exact site(s) of phosphorylation are unidentified. In the present study, we examined the phosphorylation of epitope-tagged wild-type AT(1A) receptors, transiently expressed in Chinese hamster ovary K1 cells, in response to angiotensin II (AngII) and following selective activation and inhibition of PKC. This phosphorylation was compared with mutant receptors where C-terminal serine residues (Ser(331), Ser(338) and Ser(348)) within three putative PKC consensus sites were replaced with alanine, either individually or in combination. Stimulation by AngII or the phorbol ester PMA to activate PKC induced an increase in phosphorylation of the wild-type AT(1A) receptor, which was prevented by truncation of the receptor C-terminus to remove the last 34 amino acids, including Ser(331), Ser(338) and Ser(348). Whereas single alanine mutation (Ser(331)Ala, Ser(338)Ala and Ser(348)Ala) resulted in decreased receptor phosphorylation, no single mutant completely inhibited either AngII- or PMA-induced phosphorylation. Combined mutation of the three PKC consensus sites caused an approximately 70% reduction in PMA-mediated phosphorylation. The approximately 60% reduction in AngII (1 microM)-induced phosphorylation of this triple mutant and the partial inhibition of wild-type receptor phosphorylation by bisindolylmaleimide, a specific PKC inhibitor, suggest a significant contribution of PKC to agonist-stimulated regulation. The ratio of PKC to total receptor phosphorylation was greatest at low doses of AngII (1 nM), consistent with the idea that PKC phosphorylates and regulates receptor function at low levels of stimulation, whereas phosphorylation by other kinases is more prevalent at high levels of agonist stimulation. To determine if a single PKC site is favoured when the contribution of PKC varies, the phosphorylation of wild-type and mutant receptors was examined over a range of AngII concentrations (0, 1, 10 and 100 nM). At all AngII concentrations, single mutation of Ser(331), Ser(338) or Ser(348) was incapable of completely preventing receptor phosphorylation, suggesting no clear preference for PKC consensus-site utilization. Together, these results indicate a redundancy in PKC phosphorylation of the AT(1A) receptor, whereby all three consensus sites are utilized to some degree following homologous (AngII) and heterologous (PMA) stimulation. The contribution of PKC phosphorylation to receptor regulation is unclear, but multiple PKC phosphorylation of the AT(1A) receptor may allow independent and/or complementary events to occur at the three separate sites of the C-terminus.

Full Text

The Full Text of this article is available as a PDF (372.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abdellatif M. M., Neubauer C. F., Lederer W. J., Rogers T. B. Angiotensin-induced desensitization of the phosphoinositide pathway in cardiac cells occurs at the level of the receptor. Circ Res. 1991 Sep;69(3):800–809. doi: 10.1161/01.res.69.3.800. [DOI] [PubMed] [Google Scholar]
  2. Balmforth A. J., Shepherd F. H., Warburton P., Ball S. G. Evidence of an important and direct role for protein kinase C in agonist-induced phosphorylation leading to desensitization of the angiotensin AT1A receptor. Br J Pharmacol. 1997 Dec;122(7):1469–1477. doi: 10.1038/sj.bjp.0701522. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Barker S., Kapas S., Fluck R. J., Clark A. J. Effects of the selective protein kinase C inhibitor Ro 31-7549 on human angiotensin II receptor desensitisation and intracellular calcium release. FEBS Lett. 1995 Aug 7;369(2-3):263–266. doi: 10.1016/0014-5793(95)00725-o. [DOI] [PubMed] [Google Scholar]
  4. Böhm S. K., Grady E. F., Bunnett N. W. Regulatory mechanisms that modulate signalling by G-protein-coupled receptors. Biochem J. 1997 Feb 15;322(Pt 1):1–18. doi: 10.1042/bj3220001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Conchon S., Barrault M. B., Miserey S., Corvol P., Clauser E. The C-terminal third intracellular loop of the rat AT1A angiotensin receptor plays a key role in G protein coupling specificity and transduction of the mitogenic signal. J Biol Chem. 1997 Oct 10;272(41):25566–25572. doi: 10.1074/jbc.272.41.25566. [DOI] [PubMed] [Google Scholar]
  6. Conchon S., Peltier N., Corvol P., Clauser E. A noninternalized nondesensitized truncated AT1A receptor transduces an amplified ANG II signal. Am J Physiol. 1998 Feb;274(2 Pt 1):E336–E345. doi: 10.1152/ajpendo.1998.274.2.E336. [DOI] [PubMed] [Google Scholar]
  7. Feng X., Zhang J., Barak L. S., Meyer T., Caron M. G., Hannun Y. A. Visualization of dynamic trafficking of a protein kinase C betaII/green fluorescent protein conjugate reveals differences in G protein-coupled receptor activation and desensitization. J Biol Chem. 1998 Apr 24;273(17):10755–10762. doi: 10.1074/jbc.273.17.10755. [DOI] [PubMed] [Google Scholar]
  8. Griendling K. K., Ushio-Fukai M., Lassègue B., Alexander R. W. Angiotensin II signaling in vascular smooth muscle. New concepts. Hypertension. 1997 Jan;29(1 Pt 2):366–373. doi: 10.1161/01.hyp.29.1.366. [DOI] [PubMed] [Google Scholar]
  9. Hunyady L., Bor M., Balla T., Catt K. J. Identification of a cytoplasmic Ser-Thr-Leu motif that determines agonist-induced internalization of the AT1 angiotensin receptor. J Biol Chem. 1994 Dec 16;269(50):31378–31382. [PubMed] [Google Scholar]
  10. Hunyady L., Zhang M., Jagadeesh G., Bor M., Balla T., Catt K. J. Dependence of agonist activation on a conserved apolar residue in the third intracellular loop of the AT1 angiotensin receptor. Proc Natl Acad Sci U S A. 1996 Sep 17;93(19):10040–10045. doi: 10.1073/pnas.93.19.10040. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Inagami T. Molecular biology and signaling of angiotensin receptors: an overview. J Am Soc Nephrol. 1999 Jan;10 (Suppl 11):S2–S7. [PubMed] [Google Scholar]
  12. Kai H., Alexander R. W., Ushio-Fukai M., Lyons P. R., Akers M., Griendling K. K. G-Protein binding domains of the angiotensin II AT1A receptors mapped with synthetic peptides selected from the receptor sequence. Biochem J. 1998 Jun 15;332(Pt 3):781–787. doi: 10.1042/bj3320781. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Lefkowitz R. J. G protein-coupled receptor kinases. Cell. 1993 Aug 13;74(3):409–412. doi: 10.1016/0092-8674(93)80042-d. [DOI] [PubMed] [Google Scholar]
  14. Lefkowitz R. J. G protein-coupled receptors. III. New roles for receptor kinases and beta-arrestins in receptor signaling and desensitization. J Biol Chem. 1998 Jul 24;273(30):18677–18680. doi: 10.1074/jbc.273.30.18677. [DOI] [PubMed] [Google Scholar]
  15. Luttrell L. M., Ferguson S. S., Daaka Y., Miller W. E., Maudsley S., Della Rocca G. J., Lin F., Kawakatsu H., Owada K., Luttrell D. K. Beta-arrestin-dependent formation of beta2 adrenergic receptor-Src protein kinase complexes. Science. 1999 Jan 29;283(5402):655–661. doi: 10.1126/science.283.5402.655. [DOI] [PubMed] [Google Scholar]
  16. Oppermann M., Freedman N. J., Alexander R. W., Lefkowitz R. J. Phosphorylation of the type 1A angiotensin II receptor by G protein-coupled receptor kinases and protein kinase C. J Biol Chem. 1996 May 31;271(22):13266–13272. doi: 10.1074/jbc.271.22.13266. [DOI] [PubMed] [Google Scholar]
  17. Pfeilschifter J., Fandrey J., Ochsner M., Whitebread S., de Gasparo M. Potentiation of angiotensin II-stimulated phosphoinositide hydrolysis, calcium mobilization and contraction of renal mesangial cells upon down-regulation of protein kinase C. FEBS Lett. 1990 Feb 26;261(2):307–311. doi: 10.1016/0014-5793(90)80578-7. [DOI] [PubMed] [Google Scholar]
  18. Pitcher J. A., Freedman N. J., Lefkowitz R. J. G protein-coupled receptor kinases. Annu Rev Biochem. 1998;67:653–692. doi: 10.1146/annurev.biochem.67.1.653. [DOI] [PubMed] [Google Scholar]
  19. Sakuta H., Sekiguchi M., Okamoto K., Sakai Y. Desensitization of endogenous angiotensin II receptors in Xenopus oocytes: a role of protein kinase C. Eur J Pharmacol. 1991 Sep 12;208(1):41–47. doi: 10.1016/0922-4106(91)90049-n. [DOI] [PubMed] [Google Scholar]
  20. Sano T., Ohyama K., Yamano Y., Nakagomi Y., Nakazawa S., Kikyo M., Shirai H., Blank J. S., Exton J. H., Inagami T. A domain for G protein coupling in carboxyl-terminal tail of rat angiotensin II receptor type 1A. J Biol Chem. 1997 Sep 19;272(38):23631–23636. doi: 10.1074/jbc.272.38.23631. [DOI] [PubMed] [Google Scholar]
  21. Sasamura H., Hein L., Saruta T., Pratt R. E. Evidence for internalization of both type 1 angiotensin receptor subtypes (AT1a, AT1b) by a protein kinase C independent mechanism. Hypertens Res. 1997 Dec;20(4):295–300. doi: 10.1291/hypres.20.295. [DOI] [PubMed] [Google Scholar]
  22. Smith R. D., Baukal A. J., Zolyomi A., Gaborik Z., Hunyady L., Sun L., Zhang M., Chen H. C., Catt K. J. Agonist-induced phosphorylation of the endogenous AT1 angiotensin receptor in bovine adrenal glomerulosa cells. Mol Endocrinol. 1998 May;12(5):634–644. doi: 10.1210/mend.12.5.0108. [DOI] [PubMed] [Google Scholar]
  23. Smith R. D., Hunyady L., Olivares-Reyes J. A., Mihalik B., Jayadev S., Catt K. J. Agonist-induced phosphorylation of the angiotensin AT1a receptor is localized to a serine/threonine-rich region of its cytoplasmic tail. Mol Pharmacol. 1998 Dec;54(6):935–941. doi: 10.1124/mol.54.6.935. [DOI] [PubMed] [Google Scholar]
  24. Swillens S. How to estimate the total receptor concentration when the specific radioactivity of the ligand is unknown. Trends Pharmacol Sci. 1992 Dec;13(12):430–434. doi: 10.1016/0165-6147(92)90139-w. [DOI] [PubMed] [Google Scholar]
  25. Tang H., Guo D. F., Porter J. P., Wanaka Y., Inagami T. Role of cytoplasmic tail of the type 1A angiotensin II receptor in agonist- and phorbol ester-induced desensitization. Circ Res. 1998 Mar 23;82(5):523–531. doi: 10.1161/01.res.82.5.523. [DOI] [PubMed] [Google Scholar]
  26. Tang H., Shirai H., Inagami T. Inhibition of protein kinase C prevents rapid desensitization of type 1B angiotensin II receptor. Circ Res. 1995 Aug;77(2):239–248. doi: 10.1161/01.res.77.2.239. [DOI] [PubMed] [Google Scholar]
  27. Thekkumkara T. J., Du J., Dostal D. E., Motel T. J., Thomas W. G., Baker K. M. Stable expression of a functional rat angiotensin II (AT1A) receptor in CHO-K1 cells: rapid desensitization by angiotensin II. Mol Cell Biochem. 1995 May 10;146(1):79–89. doi: 10.1007/BF00926885. [DOI] [PubMed] [Google Scholar]
  28. Thomas W. G., Baker K. M., Motel T. J., Thekkumkara T. J. Angiotensin II receptor endocytosis involves two distinct regions of the cytoplasmic tail. A role for residues on the hydrophobic face of a putative amphipathic helix. J Biol Chem. 1995 Sep 22;270(38):22153–22159. doi: 10.1074/jbc.270.38.22153. [DOI] [PubMed] [Google Scholar]
  29. Thomas W. G., Motel T. J., Kule C. E., Karoor V., Baker K. M. Phosphorylation of the angiotensin II (AT1A) receptor carboxyl terminus: a role in receptor endocytosis. Mol Endocrinol. 1998 Oct;12(10):1513–1524. doi: 10.1210/mend.12.10.0179. [DOI] [PubMed] [Google Scholar]
  30. Thomas W. G., Thekkumkara T. J., Motel T. J., Baker K. M. Stable expression of a truncated AT1A receptor in CHO-K1 cells. The carboxyl-terminal region directs agonist-induced internalization but not receptor signaling or desensitization. J Biol Chem. 1995 Jan 6;270(1):207–213. doi: 10.1074/jbc.270.1.207. [DOI] [PubMed] [Google Scholar]
  31. Zhang J., Barak L. S., Anborgh P. H., Laporte S. A., Caron M. G., Ferguson S. S. Cellular trafficking of G protein-coupled receptor/beta-arrestin endocytic complexes. J Biol Chem. 1999 Apr 16;274(16):10999–11006. doi: 10.1074/jbc.274.16.10999. [DOI] [PubMed] [Google Scholar]
  32. Zhang J., Ferguson S. S., Barak L. S., Ménard L., Caron M. G. Dynamin and beta-arrestin reveal distinct mechanisms for G protein-coupled receptor internalization. J Biol Chem. 1996 Aug 2;271(31):18302–18305. doi: 10.1074/jbc.271.31.18302. [DOI] [PubMed] [Google Scholar]
  33. Zhang M., Turnbaugh D., Cofie D., Dogan S., Koshida H., Fugate R., Kem D. C. Protein kinase C modulation of cardiomyocyte angiotensin II and vasopressin receptor desensitization. Hypertension. 1996 Feb;27(2):269–275. doi: 10.1161/01.hyp.27.2.269. [DOI] [PubMed] [Google Scholar]
  34. de Gasparo M., Husain A., Alexander W., Catt K. J., Chiu A. T., Drew M., Goodfriend T., Harding J. W., Inagami T., Timmermans P. B. Proposed update of angiotensin receptor nomenclature. Hypertension. 1995 May;25(5):924–927. doi: 10.1161/01.hyp.25.5.924. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES