Abstract
Human and bovine surfactant proteins D (SP-D) were purified from late amniotic fluid and bronchioalveolar lavage on the basis of its Ca(2+)-dependent affinity for maltose. The molecular mass of a trimeric subunit was determined by matrix-assisted laser desorption ionization MS to lie in the range 115-125 kDa for human SP-D and 110-123 kDa for bovine SP-D. A single polypeptide chain was determined at 37-41 and 36-40 kDa for the human and bovine species respectively. The major parts of the primary structures of both SP-D molecules were determined by a combination of MS and Edman degradation. The heterogeneity in SP-D was caused mainly by a high number of post-translational modifications in the collagen-like region. Proline and lysine residues were partly hydroxylated and lysine residues were further O-glycosylated with the disaccharide galactose-glucose. A partly occupied N-linked glycosylation site was characterized in human SP-D. The carbohydrate was determined as a complex type bi-antennary structure, with a small content of mono-antennary and tri-antennary structures. No sialic acid residues were present on the glycan, but some had an attached fucose and/or an N-acetylglucosamine residue linked to the core. Bovine SP-D was determined as having a similar structure.
Full Text
The Full Text of this article is available as a PDF (143.7 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Benne C. A., Benaissa-Trouw B., van Strijp J. A., Kraaijeveld C. A., van Iwaarden J. F. Surfactant protein A, but not surfactant protein D, is an opsonin for influenza A virus phagocytosis by rat alveolar macrophages. Eur J Immunol. 1997 Apr;27(4):886–890. doi: 10.1002/eji.1830270413. [DOI] [PubMed] [Google Scholar]
- Brown-Augsburger P., Chang D., Rust K., Crouch E. C. Biosynthesis of surfactant protein D. Contributions of conserved NH2-terminal cysteine residues and collagen helix formation to assembly and secretion. J Biol Chem. 1996 Aug 2;271(31):18912–18919. doi: 10.1074/jbc.271.31.18912. [DOI] [PubMed] [Google Scholar]
- Brown-Augsburger P., Hartshorn K., Chang D., Rust K., Fliszar C., Welgus H. G., Crouch E. C. Site-directed mutagenesis of Cys-15 and Cys-20 of pulmonary surfactant protein D. Expression of a trimeric protein with altered anti-viral properties. J Biol Chem. 1996 Jun 7;271(23):13724–13730. doi: 10.1074/jbc.271.23.13724. [DOI] [PubMed] [Google Scholar]
- Colley K. J., Baenziger J. U. Post-translational modifications of the core-specific lectin. Relationship to assembly, ligand binding, and secretion. J Biol Chem. 1987 Jul 25;262(21):10296–10303. [PubMed] [Google Scholar]
- Crouch E., Chang D., Rust K., Persson A., Heuser J. Recombinant pulmonary surfactant protein D. Post-translational modification and molecular assembly. J Biol Chem. 1994 Jun 3;269(22):15808–15813. [PubMed] [Google Scholar]
- Crouch E., Persson A., Chang D., Heuser J. Molecular structure of pulmonary surfactant protein D (SP-D). J Biol Chem. 1994 Jun 24;269(25):17311–17319. [PubMed] [Google Scholar]
- Hansen S., Holmskov U. Structural aspects of collectins and receptors for collectins. Immunobiology. 1998 Aug;199(2):165–189. doi: 10.1016/S0171-2985(98)80025-9. [DOI] [PubMed] [Google Scholar]
- Hawgood S., Shiffer K. Structures and properties of the surfactant-associated proteins. Annu Rev Physiol. 1991;53:375–394. doi: 10.1146/annurev.ph.53.030191.002111. [DOI] [PubMed] [Google Scholar]
- Holmskov U., Laursen S. B., Malhotra R., Wiedemann H., Timpl R., Stuart G. R., Tornøe I., Madsen P. S., Reid K. B., Jensenius J. C. Comparative study of the structural and functional properties of a bovine plasma C-type lectin, collectin-43, with other collectins. Biochem J. 1995 Feb 1;305(Pt 3):889–896. doi: 10.1042/bj3050889. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hoppe H. J., Barlow P. N., Reid K. B. A parallel three stranded alpha-helical bundle at the nucleation site of collagen triple-helix formation. FEBS Lett. 1994 May 16;344(2-3):191–195. doi: 10.1016/0014-5793(94)00383-1. [DOI] [PubMed] [Google Scholar]
- Kawasaki N., Yokota Y., Kawasaki T. Differentiation of conglutination activity and sugar-binding activity of conglutinin after removal of NH2-terminal 54 amino acid residues by endogenous serine protease(s). Arch Biochem Biophys. 1993 Sep;305(2):533–540. doi: 10.1006/abbi.1993.1457. [DOI] [PubMed] [Google Scholar]
- Kivirikko K. I., Myllylä R. Post-translational processing of procollagens. Ann N Y Acad Sci. 1985;460:187–201. doi: 10.1111/j.1749-6632.1985.tb51167.x. [DOI] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Lee Y. M., Leiby K. R., Allar J., Paris K., Lerch B., Okarma T. B. Primary structure of bovine conglutinin, a member of the C-type animal lectin family. J Biol Chem. 1991 Feb 15;266(5):2715–2723. [PubMed] [Google Scholar]
- Lim B. L., Lu J., Reid K. B. Structural similarity between bovine conglutinin and bovine lung surfactant protein D and demonstration of liver as a site of synthesis of conglutinin. Immunology. 1993 Jan;78(1):159–165. [PMC free article] [PubMed] [Google Scholar]
- Lu J., Wiedemann H., Holmskov U., Thiel S., Timpl R., Reid K. B. Structural similarity between lung surfactant protein D and conglutinin. Two distinct, C-type lectins containing collagen-like sequences. Eur J Biochem. 1993 Aug 1;215(3):793–799. doi: 10.1111/j.1432-1033.1993.tb18094.x. [DOI] [PubMed] [Google Scholar]
- Lu J., Willis A. C., Reid K. B. Purification, characterization and cDNA cloning of human lung surfactant protein D. Biochem J. 1992 Jun 15;284(Pt 3):795–802. doi: 10.1042/bj2840795. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Malhotra R., Laursen S. B., Willis A. C., Sim R. B. Localization of the receptor-binding site in the collectin family of proteins. Biochem J. 1993 Jul 1;293(Pt 1):15–19. doi: 10.1042/bj2930015. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mason R. J., Nielsen L. D., Kuroki Y., Matsuura E., Freed J. H., Shannon J. M. A 50-kDa variant form of human surfactant protein D. Eur Respir J. 1998 Nov;12(5):1147–1155. doi: 10.1183/09031936.98.12051147. [DOI] [PubMed] [Google Scholar]
- McCormack F. X., Calvert H. M., Watson P. A., Smith D. L., Mason R. J., Voelker D. R. The structure and function of surfactant protein A. Hydroxyproline- and carbohydrate-deficient mutant proteins. J Biol Chem. 1994 Feb 25;269(8):5833–5841. [PubMed] [Google Scholar]
- Merril C. R., Goldman D., Van Keuren M. L. Silver staining methods for polyacrylamide gel electrophoresis. Methods Enzymol. 1983;96:230–239. doi: 10.1016/s0076-6879(83)96021-4. [DOI] [PubMed] [Google Scholar]
- Motwani M., White R. A., Guo N., Dowler L. L., Tauber A. I., Sastry K. N. Mouse surfactant protein-D. cDNA cloning, characterization, and gene localization to chromosome 14. J Immunol. 1995 Dec 15;155(12):5671–5677. [PubMed] [Google Scholar]
- Munakata H., Nimberg R. B., Snider G. L., Robins A. G., Van Halbeek H., Vliegenthart J. F., Schmid K. The structure of the carbohydrate units of the 36K glycoprotein derived from the lung lavage of a patient with alveolar proteinosis by high resolution 1H-NMR spectroscopy. Biochem Biophys Res Commun. 1982 Oct 29;108(4):1401–1405. doi: 10.1016/s0006-291x(82)80062-4. [DOI] [PubMed] [Google Scholar]
- Ohtani K., Suzuki Y., Eda S., Kawai T., Kase T., Yamazaki H., Shimada T., Keshi H., Sakai Y., Fukuoh A. Molecular cloning of a novel human collectin from liver (CL-L1). J Biol Chem. 1999 May 7;274(19):13681–13689. doi: 10.1074/jbc.274.19.13681. [DOI] [PubMed] [Google Scholar]
- Phelps D. S., Floros J., Taeusch H. W., Jr Post-translational modification of the major human surfactant-associated proteins. Biochem J. 1986 Jul 15;237(2):373–377. doi: 10.1042/bj2370373. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rothmann A. B., Mortensen H. D., Holmskov U., Højrup P. Structural characterization of bovine collectin-43. Eur J Biochem. 1997 Feb 1;243(3):630–635. doi: 10.1111/j.1432-1033.1997.t01-1-00630.x. [DOI] [PubMed] [Google Scholar]
- Rust K., Grosso L., Zhang V., Chang D., Persson A., Longmore W., Cai G. Z., Crouch E. Human surfactant protein D: SP-D contains a C-type lectin carbohydrate recognition domain. Arch Biochem Biophys. 1991 Oct;290(1):116–126. doi: 10.1016/0003-9861(91)90597-c. [DOI] [PubMed] [Google Scholar]
- Segal D. M. Polymers of tripeptides as collagen models. VII. Synthesis and solution properties of four collagen-like polyhexapeptides. J Mol Biol. 1969 Aug 14;43(3):497–517. doi: 10.1016/0022-2836(69)90355-6. [DOI] [PubMed] [Google Scholar]
- Shimizu H., Fisher J. H., Papst P., Benson B., Lau K., Mason R. J., Voelker D. R. Primary structure of rat pulmonary surfactant protein D. cDNA and deduced amino acid sequence. J Biol Chem. 1992 Jan 25;267(3):1853–1857. [PubMed] [Google Scholar]
- Wallis R., Drickamer K. Asymmetry adjacent to the collagen-like domain in rat liver mannose-binding protein. Biochem J. 1997 Jul 15;325(Pt 2):391–400. doi: 10.1042/bj3250391. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weis W. I., Taylor M. E., Drickamer K. The C-type lectin superfamily in the immune system. Immunol Rev. 1998 Jun;163:19–34. doi: 10.1111/j.1600-065x.1998.tb01185.x. [DOI] [PubMed] [Google Scholar]
- van Iwaarden J. F., van Strijp J. A., Visser H., Haagsman H. P., Verhoef J., van Golde L. M. Binding of surfactant protein A (SP-A) to herpes simplex virus type 1-infected cells is mediated by the carbohydrate moiety of SP-A. J Biol Chem. 1992 Dec 15;267(35):25039–25043. [PubMed] [Google Scholar]