Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1999 Nov 1;343(Pt 3):663–668.

Expression of proteoglycan core proteins in human bone marrow stroma.

K P Schofield 1, J T Gallagher 1, G David 1
PMCID: PMC1220599  PMID: 10527946

Abstract

Heparan sulphate proteoglycans (HSPGs) present on the surface of bone marrow stromal cells and in the extracellular matrix (ECM) have important roles in the control of adhesion and growth of haemopoietic stem and progenitor cells. The two main groups of proteoglycans which contain heparan sulphate chains are members of the syndecan and glypican families. In this study we have identified the main surface membrane and matrix-associated HSPGs present in normal human bone marrow stroma formed in long-term culture. Proteoglycans were extracted from the adherent stromal layers and treated with heparitinase and chondroitinase ABC. The core proteins were detected by Western blotting using antibodies directed against syndecans-1-4, glypican-1 and the ECM HSPG, perlecan. Stromal cell expression at the RNA level was detected by Northern blotting and by reverse transcription PCR. Glypican-1, syndecan-3 and syndecan-4 were the major cell-membrane HSPG species and perlecan was the major ECM proteoglycan. There was no evidence for expression of syndecan-1 protein. Syndecan-3 was expressed mainly as a variant or processed 50-55 kDa core protein and in lower amounts as the characteristic 125 kDa core protein. These results suggest that syndecan-3, syndecan-4 and glypican-1 present on the surface of marrow stromal cells, together with perlecan in the ECM, may be responsible for creating the correct stromal 'niche' for the maintenance and development of haemopoietic stem and progenitor cells. The detection of a variant form of syndecan-3 as a major stromal HSPG suggests a specific role for this syndecan in haemopoiesis.

Full Text

The Full Text of this article is available as a PDF (202.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alvarez-Silva M., Borojevic R. GM-CSF and IL-3 activities in schistosomal liver granulomas are controlled by stroma-associated heparan sulfate proteoglycans. J Leukoc Biol. 1996 Mar;59(3):435–441. doi: 10.1002/jlb.59.3.435. [DOI] [PubMed] [Google Scholar]
  2. Andres J. L., DeFalcis D., Noda M., Massagué J. Binding of two growth factor families to separate domains of the proteoglycan betaglycan. J Biol Chem. 1992 Mar 25;267(9):5927–5930. [PubMed] [Google Scholar]
  3. Asundi V. K., Carey D. J. Self-association of N-syndecan (syndecan-3) core protein is mediated by a novel structural motif in the transmembrane domain and ectodomain flanking region. J Biol Chem. 1995 Nov 3;270(44):26404–26410. doi: 10.1074/jbc.270.44.26404. [DOI] [PubMed] [Google Scholar]
  4. Bernfield M., Kokenyesi R., Kato M., Hinkes M. T., Spring J., Gallo R. L., Lose E. J. Biology of the syndecans: a family of transmembrane heparan sulfate proteoglycans. Annu Rev Cell Biol. 1992;8:365–393. doi: 10.1146/annurev.cb.08.110192.002053. [DOI] [PubMed] [Google Scholar]
  5. Bonneh-Barkay D., Shlissel M., Berman B., Shaoul E., Admon A., Vlodavsky I., Carey D. J., Asundi V. K., Reich-Slotky R., Ron D. Identification of glypican as a dual modulator of the biological activity of fibroblast growth factors. J Biol Chem. 1997 May 9;272(19):12415–12421. doi: 10.1074/jbc.272.19.12415. [DOI] [PubMed] [Google Scholar]
  6. Carbone A., Gloghini A., Gattei V., Degan M., Improta S., Aldinucci D., Canzonieri V., Perin T., Volpe R., Gaidano G. Reed-Sternberg cells of classical Hodgkin's disease react with the plasma cell-specific monoclonal antibody B-B4 and express human syndecan-1. Blood. 1997 May 15;89(10):3787–3794. [PubMed] [Google Scholar]
  7. Carey D. J., Evans D. M., Stahl R. C., Asundi V. K., Conner K. J., Garbes P., Cizmeci-Smith G. Molecular cloning and characterization of N-syndecan, a novel transmembrane heparan sulfate proteoglycan. J Cell Biol. 1992 Apr;117(1):191–201. doi: 10.1083/jcb.117.1.191. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Carey D. J. N-syndecan: structure and function of a transmembrane heparan sulfate proteoglycan. Perspect Dev Neurobiol. 1996;3(4):331–346. [PubMed] [Google Scholar]
  9. David G. Integral membrane heparan sulfate proteoglycans. FASEB J. 1993 Aug;7(11):1023–1030. doi: 10.1096/fasebj.7.11.8370471. [DOI] [PubMed] [Google Scholar]
  10. Dexter T. M., Allen T. D., Lajtha L. G. Conditions controlling the proliferation of haemopoietic stem cells in vitro. J Cell Physiol. 1977 Jun;91(3):335–344. doi: 10.1002/jcp.1040910303. [DOI] [PubMed] [Google Scholar]
  11. Dhodapkar M. V., Abe E., Theus A., Lacy M., Langford J. K., Barlogie B., Sanderson R. D. Syndecan-1 is a multifunctional regulator of myeloma pathobiology: control of tumor cell survival, growth, and bone cell differentiation. Blood. 1998 Apr 15;91(8):2679–2688. [PubMed] [Google Scholar]
  12. Drzeniek Z., Siebertz B., Stöcker G., Just U., Ostertag W., Greiling H., Haubeck H. D. Proteoglycan synthesis in haematopoietic cells: isolation and characterization of heparan sulphate proteoglycans expressed by the bone-marrow stromal cell line MS-5. Biochem J. 1997 Oct 15;327(Pt 2):473–480. doi: 10.1042/bj3270473. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Gupta P., McCarthy J. B., Verfaillie C. M. Stromal fibroblast heparan sulfate is required for cytokine-mediated ex vivo maintenance of human long-term culture-initiating cells. Blood. 1996 Apr 15;87(8):3229–3236. [PubMed] [Google Scholar]
  14. Hayashi K., Hayashi M., Jalkanen M., Firestone J. H., Trelstad R. L., Bernfield M. Immunocytochemistry of cell surface heparan sulfate proteoglycan in mouse tissues. A light and electron microscopic study. J Histochem Cytochem. 1987 Oct;35(10):1079–1088. doi: 10.1177/35.10.2957423. [DOI] [PubMed] [Google Scholar]
  15. Inki P., Joensuu H., Grénman R., Klemi P., Jalkanen M. Association between syndecan-1 expression and clinical outcome in squamous cell carcinoma of the head and neck. Br J Cancer. 1994 Aug;70(2):319–323. doi: 10.1038/bjc.1994.300. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Jackson D. G., Bell J. I., Dickinson R., Timans J., Shields J., Whittle N. Proteoglycan forms of the lymphocyte homing receptor CD44 are alternatively spliced variants containing the v3 exon. J Cell Biol. 1995 Feb;128(4):673–685. doi: 10.1083/jcb.128.4.673. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Jourdan M., Ferlin M., Legouffe E., Horvathova M., Liautard J., Rossi J. F., Wijdenes J., Brochier J., Klein B. The myeloma cell antigen syndecan-1 is lost by apoptotic myeloma cells. Br J Haematol. 1998 Mar;100(4):637–646. doi: 10.1046/j.1365-2141.1998.00623.x. [DOI] [PubMed] [Google Scholar]
  18. Kim C. W., Goldberger O. A., Gallo R. L., Bernfield M. Members of the syndecan family of heparan sulfate proteoglycans are expressed in distinct cell-, tissue-, and development-specific patterns. Mol Biol Cell. 1994 Jul;5(7):797–805. doi: 10.1091/mbc.5.7.797. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Koopmann W., Krangel M. S. Identification of a glycosaminoglycan-binding site in chemokine macrophage inflammatory protein-1alpha. J Biol Chem. 1997 Apr 11;272(15):10103–10109. doi: 10.1074/jbc.272.15.10103. [DOI] [PubMed] [Google Scholar]
  20. Lord B. I., Marshall E., Woolford L. B., Hunter M. G. BB-10010/MIP-1 alpha in vivo maintains haemopoietic recovery following repeated cycles of sublethal irradiation. Br J Cancer. 1996 Oct;74(7):1017–1022. doi: 10.1038/bjc.1996.483. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Lories V., Cassiman J. J., Van den Berghe H., David G. Differential expression of cell surface heparan sulfate proteoglycans in human mammary epithelial cells and lung fibroblasts. J Biol Chem. 1992 Jan 15;267(2):1116–1122. [PubMed] [Google Scholar]
  22. Mali M., Andtfolk H., Miettinen H. M., Jalkanen M. Suppression of tumor cell growth by syndecan-1 ectodomain. J Biol Chem. 1994 Nov 11;269(45):27795–27798. [PubMed] [Google Scholar]
  23. Morris A. J., Dexter T. M., Gallagher J. T. Metabolic properties of a homogeneous proteoglycan of a haemopoietic stem cell line, FDCP-mix. Biochem J. 1989 Jun 1;260(2):479–486. doi: 10.1042/bj2600479. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Morris A. J., Turnbull J. E., Riley G. P., Gordon M. Y., Gallagher J. T. Production of heparan sulphate proteoglycans by human bone marrow stromal cells. J Cell Sci. 1991 May;99(Pt 1):149–156. doi: 10.1242/jcs.99.1.149. [DOI] [PubMed] [Google Scholar]
  25. Noonan D. M., Hassell J. R. Perlecan, the large low-density proteoglycan of basement membranes: structure and variant forms. Kidney Int. 1993 Jan;43(1):53–60. doi: 10.1038/ki.1993.10. [DOI] [PubMed] [Google Scholar]
  26. Roberts R., Gallagher J., Spooncer E., Allen T. D., Bloomfield F., Dexter T. M. Heparan sulphate bound growth factors: a mechanism for stromal cell mediated haemopoiesis. Nature. 1988 Mar 24;332(6162):376–378. doi: 10.1038/332376a0. [DOI] [PubMed] [Google Scholar]
  27. Siczkowski M., Clarke D., Gordon M. Y. Binding of primitive hematopoietic progenitor cells to marrow stromal cells involves heparan sulfate. Blood. 1992 Aug 15;80(4):912–919. [PubMed] [Google Scholar]
  28. Stöcker G., Drzeniek Z., Just U., Ostertag W., Siebertz B., Greiling H., Haubeck H. D. Proteoglycan synthesis in human and murine haematopoietic progenitor cell lines: isolation and characterization of a heparan sulphate proteoglycan as a major proteoglycan from the human haematopoietic cell line TF-1. Biochem J. 1996 Jul 1;317(Pt 1):203–212. doi: 10.1042/bj3170203. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Subramanian S. V., Fitzgerald M. L., Bernfield M. Regulated shedding of syndecan-1 and -4 ectodomains by thrombin and growth factor receptor activation. J Biol Chem. 1997 Jun 6;272(23):14713–14720. doi: 10.1074/jbc.272.23.14713. [DOI] [PubMed] [Google Scholar]
  30. Turnbull J. E., Fernig D. G., Ke Y., Wilkinson M. C., Gallagher J. T. Identification of the basic fibroblast growth factor binding sequence in fibroblast heparan sulfate. J Biol Chem. 1992 May 25;267(15):10337–10341. [PubMed] [Google Scholar]
  31. Walker A., Gallagher J. T. Structural domains of heparan sulphate for specific recognition of the C-terminal heparin-binding domain of human plasma fibronectin (HEPII). Biochem J. 1996 Aug 1;317(Pt 3):871–877. doi: 10.1042/bj3170871. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Woods A., Couchman J. R. Syndecan 4 heparan sulfate proteoglycan is a selectively enriched and widespread focal adhesion component. Mol Biol Cell. 1994 Feb;5(2):183–192. doi: 10.1091/mbc.5.2.183. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Yayon A., Klagsbrun M., Esko J. D., Leder P., Ornitz D. M. Cell surface, heparin-like molecules are required for binding of basic fibroblast growth factor to its high affinity receptor. Cell. 1991 Feb 22;64(4):841–848. doi: 10.1016/0092-8674(91)90512-w. [DOI] [PubMed] [Google Scholar]
  34. Yeaman C., Rapraeger A. C. Post-transcriptional regulation of syndecan-1 expression by cAMP in peritoneal macrophages. J Cell Biol. 1993 Aug;122(4):941–950. doi: 10.1083/jcb.122.4.941. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES