Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1999 Nov 15;344(Pt 1):1–5.

Normal prion protein has an activity like that of superoxide dismutase.

D R Brown 1, B S Wong 1, F Hafiz 1, C Clive 1, S J Haswell 1, I M Jones 1
PMCID: PMC1220606  PMID: 10548526

Abstract

We show here that mouse prion protein (PrP(C)) either as recombinant protein or immunoprecipitated from brain tissue has superoxide dismutase (SOD) activity. SOD activity was also associated with recombinant chicken PrP(C) confirming the evolutionary conserved phenotype suggested by sequence similarity. Acquisition of copper by PrP(C) during protein folding endowed SOD activity on the protein but the addition of copper following refolding did not. PrP(C) dependent SOD activity was abolished by deletion of the octapeptide-repeat region involved in copper binding. These results describe an enzymic function for PrP(C) consistent with its cellular distribution and suggest it has a direct role in cellular resistance to oxidative stress.

Full Text

The Full Text of this article is available as a PDF (168.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beauchamp C. O., Fridovich I. Isozymes of superoxide dismutase from wheat germ. Biochim Biophys Acta. 1973 Jul 12;317(1):50–64. doi: 10.1016/0005-2795(73)90198-0. [DOI] [PubMed] [Google Scholar]
  2. Billeter M., Riek R., Wider G., Hornemann S., Glockshuber R., Wüthrich K. Prion protein NMR structure and species barrier for prion diseases. Proc Natl Acad Sci U S A. 1997 Jul 8;94(14):7281–7285. doi: 10.1073/pnas.94.14.7281. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Borchelt D. R., Rogers M., Stahl N., Telling G., Prusiner S. B. Release of the cellular prion protein from cultured cells after loss of its glycoinositol phospholipid anchor. Glycobiology. 1993 Aug;3(4):319–329. doi: 10.1093/glycob/3.4.319. [DOI] [PubMed] [Google Scholar]
  4. Brown D. R., Besinger A., Herms J. W., Kretzschmar H. A. Microglial expression of the prion protein. Neuroreport. 1998 May 11;9(7):1425–1429. doi: 10.1097/00001756-199805110-00032. [DOI] [PubMed] [Google Scholar]
  5. Brown D. R., Besinger A. Prion protein expression and superoxide dismutase activity. Biochem J. 1998 Sep 1;334(Pt 2):423–429. doi: 10.1042/bj3340423. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Brown D. R., Qin K., Herms J. W., Madlung A., Manson J., Strome R., Fraser P. E., Kruck T., von Bohlen A., Schulz-Schaeffer W. The cellular prion protein binds copper in vivo. Nature. 1997 Dec 18;390(6661):684–687. doi: 10.1038/37783. [DOI] [PubMed] [Google Scholar]
  7. Brown D. R., Schmidt B., Groschup M. H., Kretzschmar H. A. Prion protein expression in muscle cells and toxicity of a prion protein fragment. Eur J Cell Biol. 1998 Jan;75(1):29–37. doi: 10.1016/S0171-9335(98)80043-5. [DOI] [PubMed] [Google Scholar]
  8. Brown D. R., Schmidt B., Kretzschmar H. A. Effects of copper on survival of prion protein knockout neurons and glia. J Neurochem. 1998 Apr;70(4):1686–1693. doi: 10.1046/j.1471-4159.1998.70041686.x. [DOI] [PubMed] [Google Scholar]
  9. Brown D. R., Schmidt B., Kretzschmar H. A. Role of microglia and host prion protein in neurotoxicity of a prion protein fragment. Nature. 1996 Mar 28;380(6572):345–347. doi: 10.1038/380345a0. [DOI] [PubMed] [Google Scholar]
  10. Brown D. R., Schulz-Schaeffer W. J., Schmidt B., Kretzschmar H. A. Prion protein-deficient cells show altered response to oxidative stress due to decreased SOD-1 activity. Exp Neurol. 1997 Jul;146(1):104–112. doi: 10.1006/exnr.1997.6505. [DOI] [PubMed] [Google Scholar]
  11. Büeler H., Fischer M., Lang Y., Bluethmann H., Lipp H. P., DeArmond S. J., Prusiner S. B., Aguet M., Weissmann C. Normal development and behaviour of mice lacking the neuronal cell-surface PrP protein. Nature. 1992 Apr 16;356(6370):577–582. doi: 10.1038/356577a0. [DOI] [PubMed] [Google Scholar]
  12. Cocco D., Calabrese L., Rigo A., Marmocchi F., Rotilio G. Preparation of selectively metal-free and metal-substituted derivatives by reaction of Cu--Zn superoxide dismutase with diethyldithiocarbamate. Biochem J. 1981 Dec 1;199(3):675–680. doi: 10.1042/bj1990675. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Colling S. B., Collinge J., Jefferys J. G. Hippocampal slices from prion protein null mice: disrupted Ca(2+)-activated K+ currents. Neurosci Lett. 1996 May 3;209(1):49–52. doi: 10.1016/0304-3940(96)12596-9. [DOI] [PubMed] [Google Scholar]
  14. Collinge J., Whittington M. A., Sidle K. C., Smith C. J., Palmer M. S., Clarke A. R., Jefferys J. G. Prion protein is necessary for normal synaptic function. Nature. 1994 Jul 28;370(6487):295–297. doi: 10.1038/370295a0. [DOI] [PubMed] [Google Scholar]
  15. Dogan P., Dogan M., Klockenkämper R. Determination of trace elements in blood serum of patients with Behçet disease by total reflection x-ray fluorescence analysis. Clin Chem. 1993 Jun;39(6):1037–1041. [PubMed] [Google Scholar]
  16. Gabriel J. M., Oesch B., Kretzschmar H., Scott M., Prusiner S. B. Molecular cloning of a candidate chicken prion protein. Proc Natl Acad Sci U S A. 1992 Oct 1;89(19):9097–9101. doi: 10.1073/pnas.89.19.9097. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hornemann S., Korth C., Oesch B., Riek R., Wider G., Wüthrich K., Glockshuber R. Recombinant full-length murine prion protein, mPrP(23-231): purification and spectroscopic characterization. FEBS Lett. 1997 Aug 18;413(2):277–281. doi: 10.1016/s0014-5793(97)00921-6. [DOI] [PubMed] [Google Scholar]
  18. Hornshaw M. P., McDermott J. R., Candy J. M., Lakey J. H. Copper binding to the N-terminal tandem repeat region of mammalian and avian prion protein: structural studies using synthetic peptides. Biochem Biophys Res Commun. 1995 Sep 25;214(3):993–999. doi: 10.1006/bbrc.1995.2384. [DOI] [PubMed] [Google Scholar]
  19. Kretzschmar H. A., Prusiner S. B., Stowring L. E., DeArmond S. J. Scrapie prion proteins are synthesized in neurons. Am J Pathol. 1986 Jan;122(1):1–5. [PMC free article] [PubMed] [Google Scholar]
  20. Marklund S. Spectrophotometric study of spontaneous disproportionation of superoxide anion radical and sensitive direct assay for superoxide dismutase. J Biol Chem. 1976 Dec 10;251(23):7504–7507. [PubMed] [Google Scholar]
  21. Miura T., Hori-i A., Takeuchi H. Metal-dependent alpha-helix formation promoted by the glycine-rich octapeptide region of prion protein. FEBS Lett. 1996 Nov 4;396(2-3):248–252. doi: 10.1016/0014-5793(96)01104-0. [DOI] [PubMed] [Google Scholar]
  22. Moser M., Colello R. J., Pott U., Oesch B. Developmental expression of the prion protein gene in glial cells. Neuron. 1995 Mar;14(3):509–517. doi: 10.1016/0896-6273(95)90307-0. [DOI] [PubMed] [Google Scholar]
  23. Oberley L. W., Spitz D. R. Assay of superoxide dismutase activity in tumor tissue. Methods Enzymol. 1984;105:457–464. doi: 10.1016/s0076-6879(84)05064-3. [DOI] [PubMed] [Google Scholar]
  24. Pauly P. C., Harris D. A. Copper stimulates endocytosis of the prion protein. J Biol Chem. 1998 Dec 11;273(50):33107–33110. doi: 10.1074/jbc.273.50.33107. [DOI] [PubMed] [Google Scholar]
  25. Prusiner S. B. Molecular biology of prion diseases. Science. 1991 Jun 14;252(5012):1515–1522. doi: 10.1126/science.1675487. [DOI] [PubMed] [Google Scholar]
  26. Salès N., Rodolfo K., Hässig R., Faucheux B., Di Giamberardino L., Moya K. L. Cellular prion protein localization in rodent and primate brain. Eur J Neurosci. 1998 Jul;10(7):2464–2471. doi: 10.1046/j.1460-9568.1998.00258.x. [DOI] [PubMed] [Google Scholar]
  27. Stöckel J., Safar J., Wallace A. C., Cohen F. E., Prusiner S. B. Prion protein selectively binds copper(II) ions. Biochemistry. 1998 May 19;37(20):7185–7193. doi: 10.1021/bi972827k. [DOI] [PubMed] [Google Scholar]
  28. Viles J. H., Cohen F. E., Prusiner S. B., Goodin D. B., Wright P. E., Dyson H. J. Copper binding to the prion protein: structural implications of four identical cooperative binding sites. Proc Natl Acad Sci U S A. 1999 Mar 2;96(5):2042–2047. doi: 10.1073/pnas.96.5.2042. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Wong B. S., Wang H., Brown D. R., Jones I. M. Selective oxidation of methionine residues in prion proteins. Biochem Biophys Res Commun. 1999 Jun 7;259(2):352–355. doi: 10.1006/bbrc.1999.0802. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES