Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1999 Nov 15;344(Pt 1):15–21.

Role of cysteine in the dietary control of the expression of 3-phosphoglycerate dehydrogenase in rat liver.

Y Achouri 1, M Robbi 1, E Van Schaftingen 1
PMCID: PMC1220608  PMID: 10548528

Abstract

Shifting rats to a protein-free, carbohydrate-rich diet, although not starvation, resulted in the appearance of mRNA for, and activity of, 3-phosphoglycerate dehydrogenase (3-PGDH) in liver as well as in a marked decrease in plasma cystine concentration. Refeeding with protein caused a 50% decrease in the mRNA in 8 h and its complete disappearance within 24 h, followed by a slower disappearance of the enzymic activity. Intraperitoneal administration of cysteine or methionine to protein-starved rats decreased the mRNA by 50-60% after 8 h. However, the repeated administration of cysteine failed to cause the complete disappearance of this mRNA in 24 h. In hepatocytes in primary culture, cysteine plus methionine and glucagon had, independently, an approx. 4-fold inhibitory effect on the abundance of the 3-PGDH mRNA and caused its almost complete disappearance when tested together. Insulin had an approx. 2-fold stimulatory effect, which was antagonized by cysteine plus methionine but was still apparent in the presence of glucagon. Nuclear run-on experiments and analysis of the stability of the mRNA with 5,6-dichlorobenzimidazole riboside, an inhibitor of RNA polymerase II, suggested that the effect of cysteine plus methionine was due to destabilization of the mRNA, whereas the effect of glucagon was exerted on transcription. Cysteine, but not methionine, inhibited the accumulation of 3-PGDH mRNA in FTO2B hepatoma cells. In conclusion, the dietary control of the expression of the 3-PGDH gene in liver seems to involve the negative effects of cysteine and glucagon and the positive effect of insulin.

Full Text

The Full Text of this article is available as a PDF (138.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Achouri Y., Rider M. H., Schaftingen E. V., Robbi M. Cloning, sequencing and expression of rat liver 3-phosphoglycerate dehydrogenase. Biochem J. 1997 Apr 15;323(Pt 2):365–370. doi: 10.1042/bj3230365. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Adibi S. A., Modesto T. A., Morse E. L., Amin P. M. Amino acid levels in plasma, liver, and skeletal muscle during protein deprivation. Am J Physiol. 1973 Aug;225(2):408–414. doi: 10.1152/ajplegacy.1973.225.2.408. [DOI] [PubMed] [Google Scholar]
  3. Bagley P. J., Stipanuk M. H. Rats fed a low protein diet supplemented with sulfur amino acids have increased cysteine dioxygenase activity and increased taurine production in hepatocytes. J Nutr. 1995 Apr;125(4):933–940. doi: 10.1093/jn/125.4.933. [DOI] [PubMed] [Google Scholar]
  4. Bartrons R., Hue L., Van Schaftingen E., Hers H. G. Hormonal control of fructose 2,6-bisphosphate concentration in isolated rat hepatocytes. Biochem J. 1983 Sep 15;214(3):829–837. doi: 10.1042/bj2140829. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Fallon H. J., Hackney E. J., Byrne W. L. Serine biosynthesis in rat liver. Regulation of enzyme concentration by dietary factors. J Biol Chem. 1966 Sep 25;241(18):4157–4167. [PubMed] [Google Scholar]
  6. Farmer A. A., Goss S. J. BWTG3 hepatoma cells can acquire phenylalanine hydroxylase, cystathionine synthase and CPS-I without genetic manipulation, but activation of the silent OTC gene requires cell fusion with hepatocytes. J Cell Sci. 1991 Apr;98(Pt 4):533–538. doi: 10.1242/jcs.98.4.533. [DOI] [PubMed] [Google Scholar]
  7. Glisin V., Crkvenjakov R., Byus C. Ribonucleic acid isolated by cesium chloride centrifugation. Biochemistry. 1974 Jun 4;13(12):2633–2637. doi: 10.1021/bi00709a025. [DOI] [PubMed] [Google Scholar]
  8. Gomez P. F., Ito K., Huang Y., Otsu K., Kuzumaki T., Ishikawa K. Dietary and hormonal regulation of aldolase B gene transcription in rat liver. Arch Biochem Biophys. 1994 Nov 1;314(2):307–314. doi: 10.1006/abbi.1994.1447. [DOI] [PubMed] [Google Scholar]
  9. Gong S. S., Guerrini L., Basilico C. Regulation of asparagine synthetase gene expression by amino acid starvation. Mol Cell Biol. 1991 Dec;11(12):6059–6066. doi: 10.1128/mcb.11.12.6059. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Guerrini L., Gong S. S., Mangasarian K., Basilico C. Cis- and trans-acting elements involved in amino acid regulation of asparagine synthetase gene expression. Mol Cell Biol. 1993 Jun;13(6):3202–3212. doi: 10.1128/mcb.13.6.3202. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hayashi S., Tanaka T., Naito J., Suda M. Dietary and hormonal regulation of serine synthesis in the rat. J Biochem. 1975 Jan 1;77(1?):207–219. [PubMed] [Google Scholar]
  12. Hidalgo J., Garvey J. S., Armario A. On the metallothionein, glutathione and cysteine relationship in rat liver. J Pharmacol Exp Ther. 1990 Nov;255(2):554–564. [PubMed] [Google Scholar]
  13. Hutson R. G., Kilberg M. S. Cloning of rat asparagine synthetase and specificity of the amino acid-dependent control of its mRNA content. Biochem J. 1994 Dec 15;304(Pt 3):745–750. doi: 10.1042/bj3040745. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Jousse C., Bruhat A., Ferrara M., Fafournoux P. Physiological concentration of amino acids regulates insulin-like-growth-factor-binding protein 1 expression. Biochem J. 1998 Aug 15;334(Pt 1):147–153. doi: 10.1042/bj3340147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kitagawa Y. Hormonal regulation of carbamoyl-phosphate synthetase I synthesis in primary cultured hepatocytes and Reuber hepatoma H-35. Defective regulation in hepatoma cells. Eur J Biochem. 1987 Aug 17;167(1):19–25. doi: 10.1111/j.1432-1033.1987.tb13299.x. [DOI] [PubMed] [Google Scholar]
  16. Marie S., Diaz-Guerra M. J., Miquerol L., Kahn A., Iynedjian P. B. The pyruvate kinase gene as a model for studies of glucose-dependent regulation of gene expression in the endocrine pancreatic beta-cell type. J Biol Chem. 1993 Nov 15;268(32):23881–23890. [PubMed] [Google Scholar]
  17. Marten N. W., Burke E. J., Hayden J. M., Straus D. S. Effect of amino acid limitation on the expression of 19 genes in rat hepatoma cells. FASEB J. 1994 May;8(8):538–544. doi: 10.1096/fasebj.8.8.8181673. [DOI] [PubMed] [Google Scholar]
  18. Mauron J., Mottu F., Spohr G. Reciprocal induction and repression of serine dehydratase and phosphoglycerate dehydrogenase by proteins and dietary-essential amino acids in rat liver. Eur J Biochem. 1973 Jan 15;32(2):331–342. doi: 10.1111/j.1432-1033.1973.tb02614.x. [DOI] [PubMed] [Google Scholar]
  19. Nakano K., Ashida K. Possible intervention of insulin, cyclic AMP, and glucocorticoids in protein-sparing action of dietary carbohydrate in rats. J Nutr. 1975 Jul;105(7):906–913. doi: 10.1093/jn/105.7.906. [DOI] [PubMed] [Google Scholar]
  20. Ogawa H., Fujioka M., Su Y., Kanamoto R., Pitot H. C. Nutritional regulation and tissue-specific expression of the serine dehydratase gene in rat. J Biol Chem. 1991 Oct 25;266(30):20412–20417. [PubMed] [Google Scholar]
  21. Raymondjean M., Kneip B., Schapira G. Preparation and characterization of mRNAs from rat heart muscle. Biochimie. 1983 Jan;65(1):65–70. doi: 10.1016/s0300-9084(83)80030-3. [DOI] [PubMed] [Google Scholar]
  22. Rishikof D. C., Kuang P. P., Poliks C., Goldstein R. H. Regulation of type I collagen mRNA in lung fibroblasts by cystine availability. Biochem J. 1998 Apr 15;331(Pt 2):417–422. doi: 10.1042/bj3310417. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Rocha D. M., Faloona G. R., Unger R. H. Glucagon-stimulating activity of 20 amino acids in dogs. J Clin Invest. 1972 Sep;51(9):2346–2351. doi: 10.1172/JCI107046. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Seglen P. O. Preparation of rat liver cells. 3. Enzymatic requirements for tissue dispersion. Exp Cell Res. 1973 Dec;82(2):391–398. doi: 10.1016/0014-4827(73)90357-1. [DOI] [PubMed] [Google Scholar]
  25. Su Y., Pitot H. C. Identification of regions in the rat serine dehydratase gene responsible for regulation by cyclic AMP alone and in the presence of glucocorticoids. Mol Cell Endocrinol. 1992 Dec;90(1):141–146. doi: 10.1016/0303-7207(92)90112-j. [DOI] [PubMed] [Google Scholar]
  26. Takada R., Saitoh M. Consumption of carbohydrate or medium- or long-chain triglycerides by unfed rats exerts different protein-sparing effects. J Nutr. 1995 Aug;125(8):2165–2171. doi: 10.1093/jn/125.8.2165. [DOI] [PubMed] [Google Scholar]
  27. Vaulont S., Munnich A., Marie J., Reach G., Pichard A. L., Simon M. P., Besmond C., Barbry P., Kahn A. Cyclic AMP as a transcriptional inhibitor of upper eukaryotic gene transcription. Biochem Biophys Res Commun. 1984 Nov 30;125(1):135–141. doi: 10.1016/s0006-291x(84)80345-9. [DOI] [PubMed] [Google Scholar]
  28. WOLLENBERGER A., RISTAU O., SCHOFFA G. [A simple technic for extremely rapid freezing of large pieces of tissue]. Pflugers Arch Gesamte Physiol Menschen Tiere. 1960;270:399–412. [PubMed] [Google Scholar]
  29. Yamamoto N., Tanaka T., Noguchi T. The effect of a high-protein diet on cystathionine beta-synthase activity and its transcript levels in rat liver. J Nutr Sci Vitaminol (Tokyo) 1996 Dec;42(6):589–593. doi: 10.3177/jnsv.42.589. [DOI] [PubMed] [Google Scholar]
  30. Zandomeni R., Mittleman B., Bunick D., Ackerman S., Weinmann R. Mechanism of action of dichloro-beta-D-ribofuranosylbenzimidazole: effect on in vitro transcription. Proc Natl Acad Sci U S A. 1982 May;79(10):3167–3170. doi: 10.1073/pnas.79.10.3167. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES