Abstract
The seven nap genes at minute 47 on the Escherichia coli K-12 chromosome encode a functional nitrate reductase located in the periplasm. The molybdoprotein, NapA, is known to be essential for nitrate reduction. We now demonstrate that the two c-type cytochromes, the periplasmic NapB and the membrane-associated NapC, as well as a fourth polypeptide, NapD, are also essential for nitrate reduction in the periplasm by physiological substrates such as glycerol, formate and glucose. None of the three iron-sulphur proteins, NapF, NapG or NapH, are essential, irrespective of whether the bacteria are grown anaerobically in the presence of nitrate or fumarate as a terminal electron acceptor, or by glucose fermentation. Mutation of napD resulted in the total loss of Methyl Viologen-dependent nitrate reductase activity of the molybdoprotein, NapA, consistent with an earlier suggestion by others that NapD might be required for post-translational modification of NapA.
Full Text
The Full Text of this article is available as a PDF (161.9 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bedzyk L., Wang T., Ye R. W. The periplasmic nitrate reductase in Pseudomonas sp. strain G-179 catalyzes the first step of denitrification. J Bacteriol. 1999 May;181(9):2802–2806. doi: 10.1128/jb.181.9.2802-2806.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Berks B. C., Ferguson S. J., Moir J. W., Richardson D. J. Enzymes and associated electron transport systems that catalyse the respiratory reduction of nitrogen oxides and oxyanions. Biochim Biophys Acta. 1995 Dec 12;1232(3):97–173. doi: 10.1016/0005-2728(95)00092-5. [DOI] [PubMed] [Google Scholar]
- Berks B. C., Richardson D. J., Reilly A., Willis A. C., Ferguson S. J. The napEDABC gene cluster encoding the periplasmic nitrate reductase system of Thiosphaera pantotropha. Biochem J. 1995 Aug 1;309(Pt 3):983–992. doi: 10.1042/bj3090983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Berks B. C., Richardson D. J., Robinson C., Reilly A., Aplin R. T., Ferguson S. J. Purification and characterization of the periplasmic nitrate reductase from Thiosphaera pantotropha. Eur J Biochem. 1994 Feb 15;220(1):117–124. doi: 10.1111/j.1432-1033.1994.tb18605.x. [DOI] [PubMed] [Google Scholar]
- Blasco F., Iobbi C., Giordano G., Chippaux M., Bonnefoy V. Nitrate reductase of Escherichia coli: completion of the nucleotide sequence of the nar operon and reassessment of the role of the alpha and beta subunits in iron binding and electron transfer. Mol Gen Genet. 1989 Aug;218(2):249–256. doi: 10.1007/BF00331275. [DOI] [PubMed] [Google Scholar]
- Blasco F., Iobbi C., Ratouchniak J., Bonnefoy V., Chippaux M. Nitrate reductases of Escherichia coli: sequence of the second nitrate reductase and comparison with that encoded by the narGHJI operon. Mol Gen Genet. 1990 Jun;222(1):104–111. doi: 10.1007/BF00283030. [DOI] [PubMed] [Google Scholar]
- Blasco F., Nunzi F., Pommier J., Brasseur R., Chippaux M., Giordano G. Formation of active heterologous nitrate reductases between nitrate reductases A and Z of Escherichia coli. Mol Microbiol. 1992 Jan;6(2):209–219. doi: 10.1111/j.1365-2958.1992.tb02002.x. [DOI] [PubMed] [Google Scholar]
- Chaudhry G. R., MacGregor C. H. Cytochrome b from Escherichia coli nitrate reductase. Its properties and association with the enzyme complex. J Biol Chem. 1983 May 10;258(9):5819–5827. [PubMed] [Google Scholar]
- Darwin A., Hussain H., Griffiths L., Grove J., Sambongi Y., Busby S., Cole J. Regulation and sequence of the structural gene for cytochrome c552 from Escherichia coli: not a hexahaem but a 50 kDa tetrahaem nitrite reductase. Mol Microbiol. 1993 Sep;9(6):1255–1265. doi: 10.1111/j.1365-2958.1993.tb01255.x. [DOI] [PubMed] [Google Scholar]
- Dias J. M., Than M. E., Humm A., Huber R., Bourenkov G. P., Bartunik H. D., Bursakov S., Calvete J., Caldeira J., Carneiro C. Crystal structure of the first dissimilatory nitrate reductase at 1.9 A solved by MAD methods. Structure. 1999 Jan 15;7(1):65–79. doi: 10.1016/s0969-2126(99)80010-0. [DOI] [PubMed] [Google Scholar]
- Enoch H. G., Lester R. L. The role of a novel cytochrome b-containing nitrate reductase and quinone in the in vitro reconstruction of formate-nitrate reductase activity of E. coli. Biochem Biophys Res Commun. 1974 Dec 23;61(4):1234–1241. doi: 10.1016/s0006-291x(74)80416-x. [DOI] [PubMed] [Google Scholar]
- Grove J., Tanapongpipat S., Thomas G., Griffiths L., Crooke H., Cole J. Escherichia coli K-12 genes essential for the synthesis of c-type cytochromes and a third nitrate reductase located in the periplasm. Mol Microbiol. 1996 Feb;19(3):467–481. doi: 10.1046/j.1365-2958.1996.383914.x. [DOI] [PubMed] [Google Scholar]
- Haddock B. A., Jones C. W. Bacterial respiration. Bacteriol Rev. 1977 Mar;41(1):47–99. doi: 10.1128/br.41.1.47-99.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hamilton C. M., Aldea M., Washburn B. K., Babitzke P., Kushner S. R. New method for generating deletions and gene replacements in Escherichia coli. J Bacteriol. 1989 Sep;171(9):4617–4622. doi: 10.1128/jb.171.9.4617-4622.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hussain H., Grove J., Griffiths L., Busby S., Cole J. A seven-gene operon essential for formate-dependent nitrite reduction to ammonia by enteric bacteria. Mol Microbiol. 1994 Apr;12(1):153–163. doi: 10.1111/j.1365-2958.1994.tb01004.x. [DOI] [PubMed] [Google Scholar]
- Iobbi-Nivol C., Santini C. L., Blasco F., Giordano G. Purification and further characterization of the second nitrate reductase of Escherichia coli K12. Eur J Biochem. 1990 Mar 30;188(3):679–687. doi: 10.1111/j.1432-1033.1990.tb15450.x. [DOI] [PubMed] [Google Scholar]
- Iobbi C., Santini C. L., Bonnefoy V., Giordano G. Biochemical and immunological evidence for a second nitrate reductase in Escherichia coli K12. Eur J Biochem. 1987 Oct 15;168(2):451–459. doi: 10.1111/j.1432-1033.1987.tb13438.x. [DOI] [PubMed] [Google Scholar]
- Jones R. W., Garland P. B. Sites and specificity of the reaction of bipyridylium compounds with anaerobic respiratory enzymes of Escherichia coli. Effects of permeability barriers imposed by the cytoplasmic membrane. Biochem J. 1977 Apr 15;164(1):199–211. doi: 10.1042/bj1640199. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nassif X., Puaoi D., So M. Transposition of Tn1545-delta 3 in the pathogenic Neisseriae: a genetic tool for mutagenesis. J Bacteriol. 1991 Apr;173(7):2147–2154. doi: 10.1128/jb.173.7.2147-2154.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pope N. R., Cole J. A. Generation of a membrane potential by one of two independent pathways for nitrite reduction by Escherichia coli. J Gen Microbiol. 1982 Jan;128(1):219–222. doi: 10.1099/00221287-128-1-219. [DOI] [PubMed] [Google Scholar]
- Potter L. C., Millington P., Griffiths L., Thomas G. H., Cole J. A. Competition between Escherichia coli strains expressing either a periplasmic or a membrane-bound nitrate reductase: does Nap confer a selective advantage during nitrate-limited growth? Biochem J. 1999 Nov 15;344(Pt 1):77–84. [PMC free article] [PubMed] [Google Scholar]
- Rabin R. S., Stewart V. Dual response regulators (NarL and NarP) interact with dual sensors (NarX and NarQ) to control nitrate- and nitrite-regulated gene expression in Escherichia coli K-12. J Bacteriol. 1993 Jun;175(11):3259–3268. doi: 10.1128/jb.175.11.3259-3268.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Reid E., Eaves D. J., Cole J. A. The CcmE protein from Escherichia coli is a haem-binding protein. FEMS Microbiol Lett. 1998 Sep 15;166(2):369–375. doi: 10.1111/j.1574-6968.1998.tb13914.x. [DOI] [PubMed] [Google Scholar]
- Reyes F., Gavira M., Castillo F., Moreno-Vivián C. Periplasmic nitrate-reducing system of the phototrophic bacterium Rhodobacter sphaeroides DSM 158: transcriptional and mutational analysis of the napKEFDABC gene cluster. Biochem J. 1998 May 1;331(Pt 3):897–904. doi: 10.1042/bj3310897. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Reyes F., Roldán M. D., Klipp W., Castillo F., Moreno-Vivián C. Isolation of periplasmic nitrate reductase genes from Rhodobacter sphaeroides DSM 158: structural and functional differences among prokaryotic nitrate reductases. Mol Microbiol. 1996 Mar;19(6):1307–1318. doi: 10.1111/j.1365-2958.1996.tb02475.x. [DOI] [PubMed] [Google Scholar]
- Roldán M. D., Sears H. J., Cheesman M. R., Ferguson S. J., Thomson A. J., Berks B. C., Richardson D. J. Spectroscopic characterization of a novel multiheme c-type cytochrome widely implicated in bacterial electron transport. J Biol Chem. 1998 Oct 30;273(44):28785–28790. doi: 10.1074/jbc.273.44.28785. [DOI] [PubMed] [Google Scholar]
- Schulz H., Hennecke H., Thöny-Meyer L. Prototype of a heme chaperone essential for cytochrome c maturation. Science. 1998 Aug 21;281(5380):1197–1200. doi: 10.1126/science.281.5380.1197. [DOI] [PubMed] [Google Scholar]
- Siddiqui R. A., Warnecke-Eberz U., Hengsberger A., Schneider B., Kostka S., Friedrich B. Structure and function of a periplasmic nitrate reductase in Alcaligenes eutrophus H16. J Bacteriol. 1993 Sep;175(18):5867–5876. doi: 10.1128/jb.175.18.5867-5876.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sodergren E. J., DeMoss J. A. narI region of the Escherichia coli nitrate reductase (nar) operon contains two genes. J Bacteriol. 1988 Apr;170(4):1721–1729. doi: 10.1128/jb.170.4.1721-1729.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stewart V., MacGregor C. H. Nitrate reductase in Escherichia coli K-12: involvement of chlC, chlE, and chlG loci. J Bacteriol. 1982 Aug;151(2):788–799. doi: 10.1128/jb.151.2.788-799.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stewart V. Requirement of Fnr and NarL functions for nitrate reductase expression in Escherichia coli K-12. J Bacteriol. 1982 Sep;151(3):1320–1325. doi: 10.1128/jb.151.3.1320-1325.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tanapongpipat S., Reid E., Cole J. A., Crooke H. Transcriptional control and essential roles of the Escherichia coli ccm gene products in formate-dependent nitrite reduction and cytochrome c synthesis. Biochem J. 1998 Sep 1;334(Pt 2):355–365. doi: 10.1042/bj3340355. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thomas G., Potter L., Cole J. A. The periplasmic nitrate reductase from Escherichia coli: a heterodimeric molybdoprotein with a double-arginine signal sequence and an unusual leader peptide cleavage site. FEMS Microbiol Lett. 1999 May 1;174(1):167–171. doi: 10.1111/j.1574-6968.1999.tb13564.x. [DOI] [PubMed] [Google Scholar]
- Thomas P. E., Ryan D., Levin W. An improved staining procedure for the detection of the peroxidase activity of cytochrome P-450 on sodium dodecyl sulfate polyacrylamide gels. Anal Biochem. 1976 Sep;75(1):168–176. doi: 10.1016/0003-2697(76)90067-1. [DOI] [PubMed] [Google Scholar]
- Trieu-Cuot P., Poyart-Salmeron C., Carlier C., Courvalin P. Nucleotide sequence of the erythromycin resistance gene of the conjugative transposon Tn1545. Nucleic Acids Res. 1990 Jun 25;18(12):3660–3660. doi: 10.1093/nar/18.12.3660. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wimpenny J. W., Cole J. A. The regulation of metabolism in facultative bacteria. 3. The effect of nitrate. Biochim Biophys Acta. 1967 Oct 9;148(1):233–242. doi: 10.1016/0304-4165(67)90298-x. [DOI] [PubMed] [Google Scholar]
- Winans S. C., Elledge S. J., Krueger J. H., Walker G. C. Site-directed insertion and deletion mutagenesis with cloned fragments in Escherichia coli. J Bacteriol. 1985 Mar;161(3):1219–1221. doi: 10.1128/jb.161.3.1219-1221.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]