Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1999 Nov 15;344(Pt 1):77–84.

Competition between Escherichia coli strains expressing either a periplasmic or a membrane-bound nitrate reductase: does Nap confer a selective advantage during nitrate-limited growth?

L C Potter 1, P Millington 1, L Griffiths 1, G H Thomas 1, J A Cole 1
PMCID: PMC1220616  PMID: 10548536

Abstract

The physiological role of the periplasmic nitrate reductase, Nap, one of the three nitrate reductases synthesized by Escherichia coli K-12, has been investigated. A series of double mutants that express only one nitrate reductase were grown anaerobically in batch cultures with glycerol as the non-fermentable carbon source and nitrate as the terminal electron acceptor. Only the strain expressing nitrate reductase A grew rapidly under these conditions. Introduction of a narL mutation severely decreased the growth rate of the nitrate reductase A strain, but enhanced the growth of the Nap(+) strain. The ability to use nitrate as a terminal electron acceptor for anaerobic growth is therefore regulated primarily by the NarL protein at the level of transcription. Furthermore, the strain expressing nitrate reductase A had a substantial selective advantage in competition with the strain expressing only Nap during nitrate-sufficient continuous culture. However, the strain expressing Nap was preferentially selected during nitrate-limited continuous growth. The saturation constants for nitrate for the two strains (which numerically are equal to the nitrate concentrations at half of the maximum specific growth rate and therefore reflect the relative affinities for nitrate) were estimated using the integrated Monod equation to be 15 and 50 microM for Nap and nitrate reductase A respectively. This difference is sufficient to explain the selective advantage of the Nap(+) strain during nitrate-limited growth. It is concluded that one physiological role of the periplasmic nitrate reductase of enteric bacteria is to enable bacteria to scavenge nitrate in nitrate-limited environments.

Full Text

The Full Text of this article is available as a PDF (140.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alef K., Klemme J. H. Assimilatory nitrate reductase of Rhodopseudomonas capsulata AD2: a molybdo-hemeprotein. Z Naturforsch C. 1979 Jan-Feb;34(1-2):33–37. doi: 10.1515/znc-1979-1-210. [DOI] [PubMed] [Google Scholar]
  2. Augier V., Guigliarelli B., Asso M., Bertrand P., Frixon C., Giordano G., Chippaux M., Blasco F. Site-directed mutagenesis of conserved cysteine residues within the beta subunit of Escherichia coli nitrate reductase. Physiological, biochemical, and EPR characterization of the mutated enzymes. Biochemistry. 1993 Mar 2;32(8):2013–2023. doi: 10.1021/bi00059a018. [DOI] [PubMed] [Google Scholar]
  3. Bedzyk L., Wang T., Ye R. W. The periplasmic nitrate reductase in Pseudomonas sp. strain G-179 catalyzes the first step of denitrification. J Bacteriol. 1999 May;181(9):2802–2806. doi: 10.1128/jb.181.9.2802-2806.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bell L. C., Richardson D. J., Ferguson S. J. Periplasmic and membrane-bound respiratory nitrate reductases in Thiosphaera pantotropha. The periplasmic enzyme catalyzes the first step in aerobic denitrification. FEBS Lett. 1990 Jun 4;265(1-2):85–87. doi: 10.1016/0014-5793(90)80889-q. [DOI] [PubMed] [Google Scholar]
  5. Berks B. C., Richardson D. J., Reilly A., Willis A. C., Ferguson S. J. The napEDABC gene cluster encoding the periplasmic nitrate reductase system of Thiosphaera pantotropha. Biochem J. 1995 Aug 1;309(Pt 3):983–992. doi: 10.1042/bj3090983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bolivar F., Rodriguez R. L., Greene P. J., Betlach M. C., Heyneker H. L., Boyer H. W., Crosa J. H., Falkow S. Construction and characterization of new cloning vehicles. II. A multipurpose cloning system. Gene. 1977;2(2):95–113. [PubMed] [Google Scholar]
  7. Carter J. P., Hsaio Y. H., Spiro S., Richardson D. J. Soil and sediment bacteria capable of aerobic nitrate respiration. Appl Environ Microbiol. 1995 Aug;61(8):2852–2858. doi: 10.1128/aem.61.8.2852-2858.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Darwin A. J., Tyson K. L., Busby S. J., Stewart V. Differential regulation by the homologous response regulators NarL and NarP of Escherichia coli K-12 depends on DNA binding site arrangement. Mol Microbiol. 1997 Aug;25(3):583–595. doi: 10.1046/j.1365-2958.1997.4971855.x. [DOI] [PubMed] [Google Scholar]
  9. Forsythe S. J., Dolby J. M., Webster A. D., Cole J. A. Nitrate- and nitrite-reducing bacteria in the achlorhydric stomach. J Med Microbiol. 1988 Apr;25(4):253–259. doi: 10.1099/00222615-25-4-253. [DOI] [PubMed] [Google Scholar]
  10. Grove J., Tanapongpipat S., Thomas G., Griffiths L., Crooke H., Cole J. Escherichia coli K-12 genes essential for the synthesis of c-type cytochromes and a third nitrate reductase located in the periplasm. Mol Microbiol. 1996 Feb;19(3):467–481. doi: 10.1046/j.1365-2958.1996.383914.x. [DOI] [PubMed] [Google Scholar]
  11. Hamilton C. M., Aldea M., Washburn B. K., Babitzke P., Kushner S. R. New method for generating deletions and gene replacements in Escherichia coli. J Bacteriol. 1989 Sep;171(9):4617–4622. doi: 10.1128/jb.171.9.4617-4622.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Iobbi-Nivol C., Crooke H., Griffiths L., Grove J., Hussain H., Pommier J., Mejean V., Cole J. A. A reassessment of the range of c-type cytochromes synthesized by Escherichia coli K-12. FEMS Microbiol Lett. 1994 Jun 1;119(1-2):89–94. doi: 10.1111/j.1574-6968.1994.tb06872.x. [DOI] [PubMed] [Google Scholar]
  13. Pope N. R., Cole J. A. Pyruvate and ethanol as electron donors for nitrite reduction by Escherichia coli K12. J Gen Microbiol. 1984 May;130(5):1279–1284. doi: 10.1099/00221287-130-5-1279. [DOI] [PubMed] [Google Scholar]
  14. Potter L. C., Cole J. A. Essential roles for the products of the napABCD genes, but not napFGH, in periplasmic nitrate reduction by Escherichia coli K-12. Biochem J. 1999 Nov 15;344(Pt 1):69–76. doi: 10.1042/0264-6021:3440069. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Prentki P., Krisch H. M. In vitro insertional mutagenesis with a selectable DNA fragment. Gene. 1984 Sep;29(3):303–313. doi: 10.1016/0378-1119(84)90059-3. [DOI] [PubMed] [Google Scholar]
  16. Prentki P., Krisch H. M. In vitro insertional mutagenesis with a selectable DNA fragment. Gene. 1984 Sep;29(3):303–313. doi: 10.1016/0378-1119(84)90059-3. [DOI] [PubMed] [Google Scholar]
  17. Rabin R. S., Stewart V. Dual response regulators (NarL and NarP) interact with dual sensors (NarX and NarQ) to control nitrate- and nitrite-regulated gene expression in Escherichia coli K-12. J Bacteriol. 1993 Jun;175(11):3259–3268. doi: 10.1128/jb.175.11.3259-3268.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Reyes F., Gavira M., Castillo F., Moreno-Vivián C. Periplasmic nitrate-reducing system of the phototrophic bacterium Rhodobacter sphaeroides DSM 158: transcriptional and mutational analysis of the napKEFDABC gene cluster. Biochem J. 1998 May 1;331(Pt 3):897–904. doi: 10.1042/bj3310897. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Richardson D. J., McEwan A. G., Page M. D., Jackson J. B., Ferguson S. J. The identification of cytochromes involved in the transfer of electrons to the periplasmic NO3- reductase of Rhodobacter capsulatus and resolution of a soluble NO3(-)-reductase--cytochrome-c552 redox complex. Eur J Biochem. 1990 Nov 26;194(1):263–270. doi: 10.1111/j.1432-1033.1990.tb19452.x. [DOI] [PubMed] [Google Scholar]
  20. Showe M. K., DeMoss J. A. Localization and regulation of synthesis of nitrate reductase in Escherichia coli. J Bacteriol. 1968 Apr;95(4):1305–1313. doi: 10.1128/jb.95.4.1305-1313.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Siddiqui R. A., Warnecke-Eberz U., Hengsberger A., Schneider B., Kostka S., Friedrich B. Structure and function of a periplasmic nitrate reductase in Alcaligenes eutrophus H16. J Bacteriol. 1993 Sep;175(18):5867–5876. doi: 10.1128/jb.175.18.5867-5876.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Winans S. C., Elledge S. J., Krueger J. H., Walker G. C. Site-directed insertion and deletion mutagenesis with cloned fragments in Escherichia coli. J Bacteriol. 1985 Mar;161(3):1219–1221. doi: 10.1128/jb.161.3.1219-1221.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Ye R. W., Averill B. A., Tiedje J. M. Characterization of Tn5 mutants deficient in dissimilatory nitrite reduction in Pseudomonas sp. strain G-179, which contains a copper nitrite reductase. J Bacteriol. 1992 Oct;174(20):6653–6658. doi: 10.1128/jb.174.20.6653-6658.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES