Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1999 Nov 15;344(Pt 1):85–92.

Polycitone A, a novel and potent general inhibitor of retroviral reverse transcriptases and cellular DNA polymerases.

S Loya 1, A Rudi 1, Y Kashman 1, A Hizi 1
PMCID: PMC1220617  PMID: 10548537

Abstract

Polycitone A, an aromatic alkaloid isolated from the ascidian Polycitor sp. exhibits potent inhibitory capacity of both RNA- and DNA-directed DNA polymerases. The drug inhibits retroviral reverse transcriptase (RT) [i.e. of human immunodeficiency virus type 1 (HIV), murine leukaemia virus (MLV) and mouse mammary tumour virus (MMTV)] as efficiently as cellular DNA polymerases (i.e. of both DNA polymerases alpha and beta and Escherichia coli DNA polymerase I). The mode and mechanism of inhibition of the DNA-polymerase activity associated with HIV-1 RT by polycitone A have been studied. The results suggest that the inhibitory capacity of the DNA polymerase activity is independent of the template-primer used. The RNase H function, on the other hand, is hardly affected by this inhibitor. Polycitone A has been shown to interfere with DNA primer extension as well as with the formation of the RT-DNA complex. Steady-state kinetic studies demonstrate that this inhibitor can be considered as an allosteric inhibitor of HIV-1 RT. The target site on the enzyme may be also spatially related to the substrate binding site, since this inhibitor behaves competitively with respect to dTTP with poly(rA).oligo(dT) as template primer. Chemical transformations of the five phenol groups of polycitone A by methoxy groups have a determinant effect on the inhibitory potency. Thus, the pentamethoxy derivative which is devoid of all hydroxy moieties, loses significantly, by 40-fold, the ability to inhibit the DNA polymerase function. Furthermore, this analogue lacks the ability to inhibit DNA primer extension as well as the formation of the RT-DNA complex. Indeed, inhibition of the first step in DNA polymerization, the formation of the RT-DNA complex, and hence, of the overall process, could serve as a model for a universal inhibitor of the superfamily of DNA polymerases.

Full Text

The Full Text of this article is available as a PDF (200.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arnold E., Das K., Ding J., Yadav P. N., Hsiou Y., Boyer P. L., Hughes S. H. Targeting HIV reverse transcriptase for anti-AIDS drug design: structural and biological considerations for chemotherapeutic strategies. Drug Des Discov. 1996 Apr;13(3-4):29–47. [PubMed] [Google Scholar]
  2. Avidan O., Hizi A. The processivity of DNA synthesis exhibited by drug-resistant variants of human immunodeficiency virus type-1 reverse transcriptase. Nucleic Acids Res. 1998 Apr 1;26(7):1713–1717. doi: 10.1093/nar/26.7.1713. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bakhanashvili M., Hizi A. Fidelity of the RNA-dependent DNA synthesis exhibited by the reverse transcriptases of human immunodeficiency virus types 1 and 2 and of murine leukemia virus: mispair extension frequencies. Biochemistry. 1992 Oct 6;31(39):9393–9398. doi: 10.1021/bi00154a010. [DOI] [PubMed] [Google Scholar]
  4. Balzarini J., Pérez-Pérez M. J., San-Félix A., Camarasa M. J., Bathurst I. C., Barr P. J., De Clercq E. Kinetics of inhibition of human immunodeficiency virus type 1 (HIV-1) reverse transcriptase by the novel HIV-1-specific nucleoside analogue [2',5'-bis-O-(tert-butyldimethylsilyl)-beta-D-ribofuranosyl]-3'-spiro-5 "- (4"-amino-1",2"-oxathiole-2",2"-dioxide)thymine (TSAO-T). J Biol Chem. 1992 Jun 15;267(17):11831–11838. [PubMed] [Google Scholar]
  5. Barré-Sinoussi F., Chermann J. C., Rey F., Nugeyre M. T., Chamaret S., Gruest J., Dauguet C., Axler-Blin C., Vézinet-Brun F., Rouzioux C. Isolation of a T-lymphotropic retrovirus from a patient at risk for acquired immune deficiency syndrome (AIDS). Science. 1983 May 20;220(4599):868–871. doi: 10.1126/science.6189183. [DOI] [PubMed] [Google Scholar]
  6. Boyer P. L., Tantillo C., Jacobo-Molina A., Nanni R. G., Ding J., Arnold E., Hughes S. H. Sensitivity of wild-type human immunodeficiency virus type 1 reverse transcriptase to dideoxynucleotides depends on template length; the sensitivity of drug-resistant mutants does not. Proc Natl Acad Sci U S A. 1994 May 24;91(11):4882–4886. doi: 10.1073/pnas.91.11.4882. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Clark P. K., Ferris A. L., Miller D. A., Hizi A., Kim K. W., Deringer-Boyer S. M., Mellini M. L., Clark A. D., Jr, Arnold G. F., Lebherz W. B., 3rd HIV-1 reverse transcriptase purified from a recombinant strain of Escherichia coli. AIDS Res Hum Retroviruses. 1990 Jun;6(6):753–764. doi: 10.1089/aid.1990.6.753. [DOI] [PubMed] [Google Scholar]
  8. Davies J. F., 2nd, Almassy R. J., Hostomska Z., Ferre R. A., Hostomsky Z. 2.3 A crystal structure of the catalytic domain of DNA polymerase beta. Cell. 1994 Mar 25;76(6):1123–1133. doi: 10.1016/0092-8674(94)90388-3. [DOI] [PubMed] [Google Scholar]
  9. De Clercq E. Antiviral therapy for human immunodeficiency virus infections. Clin Microbiol Rev. 1995 Apr;8(2):200–239. doi: 10.1128/cmr.8.2.200. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. De Clercq E. HIV inhibitors targeted at the reverse transcriptase. AIDS Res Hum Retroviruses. 1992 Feb;8(2):119–134. doi: 10.1089/aid.1992.8.119. [DOI] [PubMed] [Google Scholar]
  11. Debyser Z., Pauwels R., Andries K., Desmyter J., Kukla M., Janssen P. A., De Clercq E. An antiviral target on reverse transcriptase of human immunodeficiency virus type 1 revealed by tetrahydroimidazo-[4,5,1-jk] [1,4]benzodiazepin-2 (1H)-one and -thione derivatives. Proc Natl Acad Sci U S A. 1991 Feb 15;88(4):1451–1455. doi: 10.1073/pnas.88.4.1451. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Fischl M. A., Richman D. D., Causey D. M., Grieco M. H., Bryson Y., Mildvan D., Laskin O. L., Groopman J. E., Volberding P. A., Schooley R. T. Prolonged zidovudine therapy in patients with AIDS and advanced AIDS-related complex. AZT Collaborative Working Group. JAMA. 1989 Nov 3;262(17):2405–2410. [PubMed] [Google Scholar]
  13. Gallo R. C., Salahuddin S. Z., Popovic M., Shearer G. M., Kaplan M., Haynes B. F., Palker T. J., Redfield R., Oleske J., Safai B. Frequent detection and isolation of cytopathic retroviruses (HTLV-III) from patients with AIDS and at risk for AIDS. Science. 1984 May 4;224(4648):500–503. doi: 10.1126/science.6200936. [DOI] [PubMed] [Google Scholar]
  14. Georgiadis M. M., Jessen S. M., Ogata C. M., Telesnitsky A., Goff S. P., Hendrickson W. A. Mechanistic implications from the structure of a catalytic fragment of Moloney murine leukemia virus reverse transcriptase. Structure. 1995 Sep 15;3(9):879–892. doi: 10.1016/S0969-2126(01)00223-4. [DOI] [PubMed] [Google Scholar]
  15. Hizi A., McGill C., Hughes S. H. Expression of soluble, enzymatically active, human immunodeficiency virus reverse transcriptase in Escherichia coli and analysis of mutants. Proc Natl Acad Sci U S A. 1988 Feb;85(4):1218–1222. doi: 10.1073/pnas.85.4.1218. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hizi A., Tal R., Shaharabany M., Loya S. Catalytic properties of the reverse transcriptases of human immunodeficiency viruses type 1 and type 2. J Biol Chem. 1991 Apr 5;266(10):6230–6239. [PubMed] [Google Scholar]
  17. Hopkins A. L., Ren J., Esnouf R. M., Willcox B. E., Jones E. Y., Ross C., Miyasaka T., Walker R. T., Tanaka H., Stammers D. K. Complexes of HIV-1 reverse transcriptase with inhibitors of the HEPT series reveal conformational changes relevant to the design of potent non-nucleoside inhibitors. J Med Chem. 1996 Apr 12;39(8):1589–1600. doi: 10.1021/jm960056x. [DOI] [PubMed] [Google Scholar]
  18. Hsieh J. C., Zinnen S., Modrich P. Kinetic mechanism of the DNA-dependent DNA polymerase activity of human immunodeficiency virus reverse transcriptase. J Biol Chem. 1993 Nov 25;268(33):24607–24613. [PubMed] [Google Scholar]
  19. Jacobo-Molina A., Ding J., Nanni R. G., Clark A. D., Jr, Lu X., Tantillo C., Williams R. L., Kamer G., Ferris A. L., Clark P. Crystal structure of human immunodeficiency virus type 1 reverse transcriptase complexed with double-stranded DNA at 3.0 A resolution shows bent DNA. Proc Natl Acad Sci U S A. 1993 Jul 1;90(13):6320–6324. doi: 10.1073/pnas.90.13.6320. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Joyce C. M., Steitz T. A. Function and structure relationships in DNA polymerases. Annu Rev Biochem. 1994;63:777–822. doi: 10.1146/annurev.bi.63.070194.004021. [DOI] [PubMed] [Google Scholar]
  21. Kohlstaedt L. A., Wang J., Friedman J. M., Rice P. A., Steitz T. A. Crystal structure at 3.5 A resolution of HIV-1 reverse transcriptase complexed with an inhibitor. Science. 1992 Jun 26;256(5065):1783–1790. doi: 10.1126/science.1377403. [DOI] [PubMed] [Google Scholar]
  22. Larder B. A., Darby G., Richman D. D. HIV with reduced sensitivity to zidovudine (AZT) isolated during prolonged therapy. Science. 1989 Mar 31;243(4899):1731–1734. doi: 10.1126/science.2467383. [DOI] [PubMed] [Google Scholar]
  23. Larder B. A., Kemp S. D. Multiple mutations in HIV-1 reverse transcriptase confer high-level resistance to zidovudine (AZT). Science. 1989 Dec 1;246(4934):1155–1158. doi: 10.1126/science.2479983. [DOI] [PubMed] [Google Scholar]
  24. Loya S., Bakhanashvili M., Kashman Y., Hizi A. Mechanism of inhibition of HIV reverse transcriptase by toxiusol, a novel general inhibitor of retroviral and cellular DNA polymerases. Biochemistry. 1995 Feb 21;34(7):2260–2266. doi: 10.1021/bi00007a021. [DOI] [PubMed] [Google Scholar]
  25. Loya S., Bakhanashvili M., Kashman Y., Hizi A. Peyssonols A and B, two novel inhibitors of the reverse transcriptases of human immunodeficiency virus types 1 and 2. Arch Biochem Biophys. 1995 Feb 1;316(2):789–796. doi: 10.1006/abbi.1995.1105. [DOI] [PubMed] [Google Scholar]
  26. Loya S., Hizi A. The inhibition of human immunodeficiency virus type 1 reverse transcriptase by avarol and avarone derivatives. FEBS Lett. 1990 Aug 20;269(1):131–134. doi: 10.1016/0014-5793(90)81137-d. [DOI] [PubMed] [Google Scholar]
  27. Loya S., Kashman Y., Hizi A. The carotenoid halocynthiaxanthin: a novel inhibitor of the reverse transcriptases of human immunodeficiency viruses type 1 and type 2. Arch Biochem Biophys. 1992 Mar;293(2):208–212. doi: 10.1016/0003-9861(92)90386-b. [DOI] [PubMed] [Google Scholar]
  28. Loya S., Rudi A., Kashman Y., Hizi A. Mode of inhibition of HIV reverse transcriptase by 2-hexaprenylhydroquinone, a novel general inhibitor of RNA-and DNA-directed DNA polymerases. Biochem J. 1997 Jun 15;324(Pt 3):721–727. doi: 10.1042/bj3240721. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Loya S., Rudi A., Tal R., Kashman Y., Loya Y., Hizi A. 3,5,8-Trihydroxy-4-quinolone, a novel natural inhibitor of the reverse transcriptases of human immunodeficiency viruses type 1 and type 2. Arch Biochem Biophys. 1994 Mar;309(2):315–322. doi: 10.1006/abbi.1994.1119. [DOI] [PubMed] [Google Scholar]
  30. Loya S., Tal R., Kashman Y., Hizi A. Illimaquinone, a selective inhibitor of the RNase H activity of human immunodeficiency virus type 1 reverse transcriptase. Antimicrob Agents Chemother. 1990 Oct;34(10):2009–2012. doi: 10.1128/aac.34.10.2009. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Majumdar C., Abbotts J., Broder S., Wilson S. H. Studies on the mechanism of human immunodeficiency virus reverse transcriptase. Steady-state kinetics, processivity, and polynucleotide inhibition. J Biol Chem. 1988 Oct 25;263(30):15657–15665. [PubMed] [Google Scholar]
  32. Mitsuya H., Broder S. Inhibition of the in vitro infectivity and cytopathic effect of human T-lymphotrophic virus type III/lymphadenopathy-associated virus (HTLV-III/LAV) by 2',3'-dideoxynucleosides. Proc Natl Acad Sci U S A. 1986 Mar;83(6):1911–1915. doi: 10.1073/pnas.83.6.1911. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Patel P. H., Jacobo-Molina A., Ding J., Tantillo C., Clark A. D., Jr, Raag R., Nanni R. G., Hughes S. H., Arnold E. Insights into DNA polymerization mechanisms from structure and function analysis of HIV-1 reverse transcriptase. Biochemistry. 1995 Apr 25;34(16):5351–5363. doi: 10.1021/bi00016a006. [DOI] [PubMed] [Google Scholar]
  34. Pelletier H., Sawaya M. R., Kumar A., Wilson S. H., Kraut J. Structures of ternary complexes of rat DNA polymerase beta, a DNA template-primer, and ddCTP. Science. 1994 Jun 24;264(5167):1891–1903. [PubMed] [Google Scholar]
  35. Perach M., Rubinek T., Hughes S. H., Hizi A. Analysis of HIV-2 RT mutants provides evidence that resistance of HIV-1 RT and HIV-2 RT to nucleoside analogs involves a repositioning of the template-primer. J Mol Biol. 1997 May 9;268(3):648–654. doi: 10.1006/jmbi.1997.0927. [DOI] [PubMed] [Google Scholar]
  36. Reardon J. E. Human immunodeficiency virus reverse transcriptase: steady-state and pre-steady-state kinetics of nucleotide incorporation. Biochemistry. 1992 May 12;31(18):4473–4479. doi: 10.1021/bi00133a013. [DOI] [PubMed] [Google Scholar]
  37. Reardon J. E., Miller W. H. Human immunodeficiency virus reverse transcriptase. Substrate and inhibitor kinetics with thymidine 5'-triphosphate and 3'-azido-3'-deoxythymidine 5'-triphosphate. J Biol Chem. 1990 Nov 25;265(33):20302–20307. [PubMed] [Google Scholar]
  38. Richman D. D., Fischl M. A., Grieco M. H., Gottlieb M. S., Volberding P. A., Laskin O. L., Leedom J. M., Groopman J. E., Mildvan D., Hirsch M. S. The toxicity of azidothymidine (AZT) in the treatment of patients with AIDS and AIDS-related complex. A double-blind, placebo-controlled trial. N Engl J Med. 1987 Jul 23;317(4):192–197. doi: 10.1056/NEJM198707233170402. [DOI] [PubMed] [Google Scholar]
  39. Sawaya M. R., Pelletier H., Kumar A., Wilson S. H., Kraut J. Crystal structure of rat DNA polymerase beta: evidence for a common polymerase mechanism. Science. 1994 Jun 24;264(5167):1930–1935. doi: 10.1126/science.7516581. [DOI] [PubMed] [Google Scholar]
  40. Shaharabany M., Hizi A. The DNA-dependent and RNA-dependent DNA polymerase activities of the reverse transcriptases of human immunodeficiency viruses types 1 and 2. AIDS Res Hum Retroviruses. 1991 Nov;7(11):883–888. doi: 10.1089/aid.1991.7.883. [DOI] [PubMed] [Google Scholar]
  41. Sousa R. Structural and mechanistic relationships between nucleic acid polymerases. Trends Biochem Sci. 1996 May;21(5):186–190. [PubMed] [Google Scholar]
  42. Spence R. A., Kati W. M., Anderson K. S., Johnson K. A. Mechanism of inhibition of HIV-1 reverse transcriptase by nonnucleoside inhibitors. Science. 1995 Feb 17;267(5200):988–993. doi: 10.1126/science.7532321. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Tantillo C., Ding J., Jacobo-Molina A., Nanni R. G., Boyer P. L., Hughes S. H., Pauwels R., Andries K., Janssen P. A., Arnold E. Locations of anti-AIDS drug binding sites and resistance mutations in the three-dimensional structure of HIV-1 reverse transcriptase. Implications for mechanisms of drug inhibition and resistance. J Mol Biol. 1994 Oct 28;243(3):369–387. doi: 10.1006/jmbi.1994.1665. [DOI] [PubMed] [Google Scholar]
  44. Taube R., Loya S., Avidan O., Perach M., Hizi A. Reverse transcriptase of mouse mammary tumour virus: expression in bacteria, purification and biochemical characterization. Biochem J. 1998 Feb 1;329(Pt 3):579–587. doi: 10.1042/bj3290579. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Yuasa S., Sadakata Y., Takashima H., Sekiya K., Inouye N., Ubasawa M., Baba M. Selective and synergistic inhibition of human immunodeficiency virus type 1 reverse transcriptase by a non-nucleoside inhibitor, MKC-442. Mol Pharmacol. 1993 Oct;44(4):895–900. [PubMed] [Google Scholar]
  46. de Clercq E. Non-nucleoside reverse transcriptase inhibitors (NNRTIs) for the treatment of human immunodeficiency virus type 1 (HIV-1) infections: strategies to overcome drug resistance development. Med Res Rev. 1996 Mar;16(2):125–157. doi: 10.1002/(SICI)1098-1128(199603)16:2<125::AID-MED1>3.0.CO;2-2. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES