Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1999 Nov 15;344(Pt 1):109–116.

Formation of glyoxal, methylglyoxal and 3-deoxyglucosone in the glycation of proteins by glucose.

P J Thornalley 1, A Langborg 1, H S Minhas 1
PMCID: PMC1220620  PMID: 10548540

Abstract

The glycation of proteins by glucose has been linked to the development of diabetic complications and other diseases. Early glycation is thought to involve the reaction of glucose with N-terminal and lysyl side chain amino groups to form Schiff's base and fructosamine adducts. The formation of the alpha-oxoaldehydes, glyoxal, methylglyoxal and 3-deoxyglucosone, in early glycation was investigated. Glucose (50 mM) degraded slowly at pH 7.4 and 37 degrees C to form glyoxal, methylglyoxal and 3-deoxyglucosone throughout a 3-week incubation period. Addition of t-BOC-lysine and human serum albumin increased the rate of formation of alpha-oxoaldehydes - except glyoxal and methylglyoxal concentrations were low with albumin, as expected from the high reactivity of glyoxal and methylglyoxal with arginine residues. The degradation of fructosyl-lysine also formed glyoxal, methylglyoxal and 3-deoxyglucosone. alpha-Oxoaldehyde formation was dependent on the concentration of phosphate buffer and availability of trace metal ions. This suggests that alpha-oxoaldehydes were formed in early glycation from the degradation of glucose and Schiff's base adduct. Since alpha-oxoaldehydes are important precursors of advanced glycation adducts, these adducts may be formed from early and advanced glycation processes. Short periods of hyperglycaemia, as occur in impaired glucose tolerance, may be sufficient to increase the concentrations of alpha-oxoaldehydes in vivo.

Full Text

The Full Text of this article is available as a PDF (221.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baynes J. W., Thorpe S. R., Murtiashaw M. H. Nonenzymatic glucosylation of lysine residues in albumin. Methods Enzymol. 1984;106:88–98. doi: 10.1016/0076-6879(84)06010-9. [DOI] [PubMed] [Google Scholar]
  2. Brownlee M., Vlassara H., Cerami A. Nonenzymatic glycosylation and the pathogenesis of diabetic complications. Ann Intern Med. 1984 Oct;101(4):527–537. doi: 10.7326/0003-4819-101-4-527. [DOI] [PubMed] [Google Scholar]
  3. Frye E. B., Degenhardt T. P., Thorpe S. R., Baynes J. W. Role of the Maillard reaction in aging of tissue proteins. Advanced glycation end product-dependent increase in imidazolium cross-links in human lens proteins. J Biol Chem. 1998 Jul 24;273(30):18714–18719. doi: 10.1074/jbc.273.30.18714. [DOI] [PubMed] [Google Scholar]
  4. Hayase F., Shibuya T., Sato J., Yamamoto M. Effects of oxygen and transition metals on the advanced Maillard reaction of proteins with glucose. Biosci Biotechnol Biochem. 1996 Nov;60(11):1820–1825. doi: 10.1271/bbb.60.1820. [DOI] [PubMed] [Google Scholar]
  5. Kato M., Nakayama H., Makita Z., Aoki S., Kuroda Y., Misawa K., Yoshida H., Yanagisawa K., Nakagawa S. Radioimmunoassay for non-enzymatically glycated serum proteins. Horm Metab Res. 1989 May;21(5):245–248. doi: 10.1055/s-2007-1009204. [DOI] [PubMed] [Google Scholar]
  6. Lo T. W., Westwood M. E., McLellan A. C., Selwood T., Thornalley P. J. Binding and modification of proteins by methylglyoxal under physiological conditions. A kinetic and mechanistic study with N alpha-acetylarginine, N alpha-acetylcysteine, and N alpha-acetyllysine, and bovine serum albumin. J Biol Chem. 1994 Dec 23;269(51):32299–32305. [PubMed] [Google Scholar]
  7. Lyons T. J., Silvestri G., Dunn J. A., Dyer D. G., Baynes J. W. Role of glycation in modification of lens crystallins in diabetic and nondiabetic senile cataracts. Diabetes. 1991 Aug;40(8):1010–1015. doi: 10.2337/diab.40.8.1010. [DOI] [PubMed] [Google Scholar]
  8. McCance D. R., Dyer D. G., Dunn J. A., Bailie K. E., Thorpe S. R., Baynes J. W., Lyons T. J. Maillard reaction products and their relation to complications in insulin-dependent diabetes mellitus. J Clin Invest. 1993 Jun;91(6):2470–2478. doi: 10.1172/JCI116482. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. McLellan A. C., Phillips S. A., Thornalley P. J. The assay of methylglyoxal in biological systems by derivatization with 1,2-diamino-4,5-dimethoxybenzene. Anal Biochem. 1992 Oct;206(1):17–23. doi: 10.1016/s0003-2697(05)80005-3. [DOI] [PubMed] [Google Scholar]
  10. Miyata T., Oda O., Inagi R., Iida Y., Araki N., Yamada N., Horiuchi S., Taniguchi N., Maeda K., Kinoshita T. beta 2-Microglobulin modified with advanced glycation end products is a major component of hemodialysis-associated amyloidosis. J Clin Invest. 1993 Sep;92(3):1243–1252. doi: 10.1172/JCI116696. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Mullarkey C. J., Edelstein D., Brownlee M. Free radical generation by early glycation products: a mechanism for accelerated atherogenesis in diabetes. Biochem Biophys Res Commun. 1990 Dec 31;173(3):932–939. doi: 10.1016/s0006-291x(05)80875-7. [DOI] [PubMed] [Google Scholar]
  12. Nagaraj R. H., Shipanova I. N., Faust F. M. Protein cross-linking by the Maillard reaction. Isolation, characterization, and in vivo detection of a lysine-lysine cross-link derived from methylglyoxal. J Biol Chem. 1996 Aug 9;271(32):19338–19345. doi: 10.1074/jbc.271.32.19338. [DOI] [PubMed] [Google Scholar]
  13. Neglia C. I., Cohen H. J., Garber A. R., Ellis P. D., Thorpe S. R., Baynes J. W. 13C NMR investigation of nonenzymatic glucosylation of protein. Model studies using RNase A. J Biol Chem. 1983 Dec 10;258(23):14279–14283. [PubMed] [Google Scholar]
  14. Paul R. G., Avery N. C., Slatter D. A., Sims T. J., Bailey A. J. Isolation and characterization of advanced glycation end products derived from the in vitro reaction of ribose and collagen. Biochem J. 1998 Mar 15;330(Pt 3):1241–1248. doi: 10.1042/bj3301241. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Sell D. R., Lane M. A., Johnson W. A., Masoro E. J., Mock O. B., Reiser K. M., Fogarty J. F., Cutler R. G., Ingram D. K., Roth G. S. Longevity and the genetic determination of collagen glycoxidation kinetics in mammalian senescence. Proc Natl Acad Sci U S A. 1996 Jan 9;93(1):485–490. doi: 10.1073/pnas.93.1.485. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Sell D. R., Monnier V. M. End-stage renal disease and diabetes catalyze the formation of a pentose-derived crosslink from aging human collagen. J Clin Invest. 1990 Feb;85(2):380–384. doi: 10.1172/JCI114449. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Sims T. J., Rasmussen L. M., Oxlund H., Bailey A. J. The role of glycation cross-links in diabetic vascular stiffening. Diabetologia. 1996 Aug;39(8):946–951. doi: 10.1007/BF00403914. [DOI] [PubMed] [Google Scholar]
  18. Smith P. R., Thornalley P. J. Influence of pH and phosphate ions on the kinetics of enolisation and degradation of fructosamines. Studies with the model fructosamine, N epsilon-1-deoxy-D-fructos-1-yl-hippuryl-lysine. Biochem Int. 1992 Nov;28(3):429–439. [PubMed] [Google Scholar]
  19. Smith P. R., Thornalley P. J. Mechanism of the degradation of non-enzymatically glycated proteins under physiological conditions. Studies with the model fructosamine, N epsilon-(1-deoxy-D-fructos-1-yl)hippuryl-lysine. Eur J Biochem. 1992 Dec 15;210(3):729–739. doi: 10.1111/j.1432-1033.1992.tb17474.x. [DOI] [PubMed] [Google Scholar]
  20. Thornalley P. J. Cell activation by glycated proteins. AGE receptors, receptor recognition factors and functional classification of AGEs. Cell Mol Biol (Noisy-le-grand) 1998 Nov;44(7):1013–1023. [PubMed] [Google Scholar]
  21. Thornalley P. J. Monosaccharide autoxidation in health and disease. Environ Health Perspect. 1985 Dec;64:297–307. doi: 10.1289/ehp.8564297. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Thornalley P., Wolff S., Crabbe J., Stern A. The autoxidation of glyceraldehyde and other simple monosaccharides under physiological conditions catalysed by buffer ions. Biochim Biophys Acta. 1984 Feb 14;797(2):276–287. doi: 10.1016/0304-4165(84)90131-4. [DOI] [PubMed] [Google Scholar]
  23. Vitek M. P., Bhattacharya K., Glendening J. M., Stopa E., Vlassara H., Bucala R., Manogue K., Cerami A. Advanced glycation end products contribute to amyloidosis in Alzheimer disease. Proc Natl Acad Sci U S A. 1994 May 24;91(11):4766–4770. doi: 10.1073/pnas.91.11.4766. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Vlassara H., Fuh H., Makita Z., Krungkrai S., Cerami A., Bucala R. Exogenous advanced glycosylation end products induce complex vascular dysfunction in normal animals: a model for diabetic and aging complications. Proc Natl Acad Sci U S A. 1992 Dec 15;89(24):12043–12047. doi: 10.1073/pnas.89.24.12043. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Watkins N. G., Neglia-Fisher C. I., Dyer D. G., Thorpe S. R., Baynes J. W. Effect of phosphate on the kinetics and specificity of glycation of protein. J Biol Chem. 1987 May 25;262(15):7207–7212. [PubMed] [Google Scholar]
  26. Wells-Knecht K. J., Zyzak D. V., Litchfield J. E., Thorpe S. R., Baynes J. W. Mechanism of autoxidative glycosylation: identification of glyoxal and arabinose as intermediates in the autoxidative modification of proteins by glucose. Biochemistry. 1995 Mar 21;34(11):3702–3709. doi: 10.1021/bi00011a027. [DOI] [PubMed] [Google Scholar]
  27. Wells-Knecht M. C., Thorpe S. R., Baynes J. W. Pathways of formation of glycoxidation products during glycation of collagen. Biochemistry. 1995 Nov 21;34(46):15134–15141. doi: 10.1021/bi00046a020. [DOI] [PubMed] [Google Scholar]
  28. Westwood M. E., Argirov O. K., Abordo E. A., Thornalley P. J. Methylglyoxal-modified arginine residues--a signal for receptor-mediated endocytosis and degradation of proteins by monocytic THP-1 cells. Biochim Biophys Acta. 1997 Mar 27;1356(1):84–94. doi: 10.1016/s0167-4889(96)00154-1. [DOI] [PubMed] [Google Scholar]
  29. Zyzak D. V., Richardson J. M., Thorpe S. R., Baynes J. W. Formation of reactive intermediates from Amadori compounds under physiological conditions. Arch Biochem Biophys. 1995 Jan 10;316(1):547–554. doi: 10.1006/abbi.1995.1073. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES