Abstract
Exposure of amino acids, peptides and proteins to radicals, in the presence of oxygen, gives high yields of hydroperoxides. These materials are readily decomposed by transition metal ions to give further radicals. We hypothesized that hydroperoxide formation on nuclear proteins, and subsequent decomposition of these hydroperoxides to radicals, might result in oxidative damage to associated DNA. We demonstrate here that exposure of histone H1 and model compounds to gamma-radiation in the presence of oxygen gives hydroperoxides in a dose-dependent manner. These hydroperoxides decompose to oxygen- and carbon-centred radicals (detected by electron paramagnetic resonance spectroscopy) on exposure to Cu(+) and other transition metal ions. These hydroperoxide-derived radicals react readily with pyrimidine DNA bases and nucleosides to give adduct species (i.e. protein-DNA base cross-links). Product analysis has demonstrated that radicals from histone H1-hydroperoxides, and other protein and amino acid hydroperoxides, can also oxidize both free 2'-deoxyguanosine and intact calf thymus DNA to give the mutagenic oxidized base 7, 8-dihydro-8-oxo-2'-deoxyguanosine (8-hydroxy-2'-deoxyguanosine, 8-oxodG). The yield of 7,8-dihydro-8-oxo-2'-deoxyguanosine is proportional to the initial protein-hydroperoxide concentration, and corresponds (for histone H1-hydroperoxide, 280 microM) to approx. 1. 4% conversion for free 2'-deoxyguanosine (200 microM), and 0.14% for 2'-deoxyguanosine in DNA (70 microgram/ml). Evidence has also been obtained with DNA for reaction at cytosine and thymine, but not adenine; the lack of damage to the latter may result from damage transfer to 2'-deoxyguanosine residues. These studies demonstrate that initial radical-induced damage to nuclear proteins can give rise to subsequent DNA damage; the latter includes both DNA-protein cross-links and formation of oxidized DNA bases.
Full Text
The Full Text of this article is available as a PDF (254.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Augusto O. Alkylation and cleavage of DNA by carbon-centered radical metabolites. Free Radic Biol Med. 1993 Sep;15(3):329–336. doi: 10.1016/0891-5849(93)90079-a. [DOI] [PubMed] [Google Scholar]
- Augusto O., Netto L. E., Gomes L. F. DNA alkylation by carbon-centered radicals. Braz J Med Biol Res. 1992;25(12):1171–1183. [PubMed] [Google Scholar]
- Chiu S. M., Xue L. Y., Friedman L. R., Oleinick N. L. Copper ion-mediated sensitization of nuclear matrix attachment sites to ionizing radiation. Biochemistry. 1993 Jun 22;32(24):6214–6219. doi: 10.1021/bi00075a014. [DOI] [PubMed] [Google Scholar]
- Chiu S. M., Xue L. Y., Friedman L. R., Oleinick N. L. Differential dependence on chromatin structure for copper and iron ion induction of DNA double-strand breaks. Biochemistry. 1995 Feb 28;34(8):2653–2661. doi: 10.1021/bi00008a032. [DOI] [PubMed] [Google Scholar]
- Davies M. J., Fu S., Dean R. T. Protein hydroperoxides can give rise to reactive free radicals. Biochem J. 1995 Jan 15;305(Pt 2):643–649. doi: 10.1042/bj3050643. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Davies M. J., Gilbert B. C., Haywood R. M. Radical-induced damage to bovine serum albumin: role of the cysteine residue. Free Radic Res Commun. 1993;18(6):353–367. doi: 10.3109/10715769309147502. [DOI] [PubMed] [Google Scholar]
- Davies M. J., Gilbert B. C., Haywood R. M. Radical-induced damage to proteins: e.s.r. spin-trapping studies. Free Radic Res Commun. 1991;15(2):111–127. doi: 10.3109/10715769109049131. [DOI] [PubMed] [Google Scholar]
- Davies M. J. Protein and peptide alkoxyl radicals can give rise to C-terminal decarboxylation and backbone cleavage. Arch Biochem Biophys. 1996 Dec 1;336(1):163–172. doi: 10.1006/abbi.1996.0545. [DOI] [PubMed] [Google Scholar]
- Dean R. T., Fu S., Stocker R., Davies M. J. Biochemistry and pathology of radical-mediated protein oxidation. Biochem J. 1997 May 15;324(Pt 1):1–18. doi: 10.1042/bj3240001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dijkwel P. A., Wenink P. W. Structural integrity of the nuclear matrix: differential effects of thiol agents and metal chelators. J Cell Sci. 1986 Aug;84:53–67. doi: 10.1242/jcs.84.1.53. [DOI] [PubMed] [Google Scholar]
- Dizdaroglu M. Chemical determination of free radical-induced damage to DNA. Free Radic Biol Med. 1991;10(3-4):225–242. doi: 10.1016/0891-5849(91)90080-m. [DOI] [PubMed] [Google Scholar]
- Douki T., Delatour T., Paganon F., Cadet J. Measurement of oxidative damage at pyrimidine bases in gamma-irradiated DNA. Chem Res Toxicol. 1996 Oct-Nov;9(7):1145–1151. doi: 10.1021/tx960095b. [DOI] [PubMed] [Google Scholar]
- Duling D. R. Simulation of multiple isotropic spin-trap EPR spectra. J Magn Reson B. 1994 Jun;104(2):105–110. doi: 10.1006/jmrb.1994.1062. [DOI] [PubMed] [Google Scholar]
- Fu S. L., Dean R. T. Structural characterization of the products of hydroxyl-radical damage to leucine and their detection on proteins. Biochem J. 1997 May 15;324(Pt 1):41–48. doi: 10.1042/bj3240041. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fu S., Gebicki S., Jessup W., Gebicki J. M., Dean R. T. Biological fate of amino acid, peptide and protein hydroperoxides. Biochem J. 1995 Nov 1;311(Pt 3):821–827. doi: 10.1042/bj3110821. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fu S., Hick L. A., Sheil M. M., Dean R. T. Structural identification of valine hydroperoxides and hydroxides on radical-damaged amino acid, peptide, and protein molecules. Free Radic Biol Med. 1995 Sep;19(3):281–292. doi: 10.1016/0891-5849(95)00021-o. [DOI] [PubMed] [Google Scholar]
- Gebicki S., Gebicki J. M. Crosslinking of DNA and proteins induced by protein hydroperoxides. Biochem J. 1999 Mar 15;338(Pt 3):629–636. [PMC free article] [PubMed] [Google Scholar]
- Gebicki S., Gebicki J. M. Formation of peroxides in amino acids and proteins exposed to oxygen free radicals. Biochem J. 1993 Feb 1;289(Pt 3):743–749. doi: 10.1042/bj2890743. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gieseg S. P., Simpson J. A., Charlton T. S., Duncan M. W., Dean R. T. Protein-bound 3,4-dihydroxyphenylalanine is a major reductant formed during hydroxyl radical damage to proteins. Biochemistry. 1993 May 11;32(18):4780–4786. doi: 10.1021/bi00069a012. [DOI] [PubMed] [Google Scholar]
- Hanna P. M., Chamulitrat W., Mason R. P. When are metal ion-dependent hydroxyl and alkoxyl radical adducts of 5,5-dimethyl-1-pyrroline N-oxide artifacts? Arch Biochem Biophys. 1992 Aug 1;296(2):640–644. doi: 10.1016/0003-9861(92)90620-c. [DOI] [PubMed] [Google Scholar]
- Hazlewood C., Davies M. J. Damage to DNA and RNA by tumour promoter-derived alkoxyl radicals: an EPR spin trapping study. Biochem Soc Trans. 1995 May;23(2):259S–259S. doi: 10.1042/bst023259s. [DOI] [PubMed] [Google Scholar]
- Hix S., Morais M. da S., Augusto O. DNA methylation by tert-butyl hydroperoxide-iron (II). Free Radic Biol Med. 1995 Sep;19(3):293–301. doi: 10.1016/0891-5849(95)00026-t. [DOI] [PubMed] [Google Scholar]
- Lebkowski J. S., Laemmli U. K. Evidence for two levels of DNA folding in histone-depleted HeLa interphase nuclei. J Mol Biol. 1982 Apr 5;156(2):309–324. doi: 10.1016/0022-2836(82)90331-x. [DOI] [PubMed] [Google Scholar]
- Loft S., Poulsen H. E. Cancer risk and oxidative DNA damage in man. J Mol Med (Berl) 1996 Jun;74(6):297–312. doi: 10.1007/BF00207507. [DOI] [PubMed] [Google Scholar]
- Morin B., Bubb W. A., Davies M. J., Dean R. T., Fu S. 3-Hydroxylysine, a potential marker for studying radical-induced protein oxidation. Chem Res Toxicol. 1998 Nov;11(11):1265–1273. doi: 10.1021/tx980118h. [DOI] [PubMed] [Google Scholar]
- Morin B., Davies M. J., Dean R. T. The protein oxidation product 3,4-dihydroxyphenylalanine (DOPA) mediates oxidative DNA damage. Biochem J. 1998 Mar 15;330(Pt 3):1059–1067. doi: 10.1042/bj3301059. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Robinson M. G., Weiss J. J., Wheeler C. M. Irradiation deoxyribonucleohistone solutions. I. Amino acid destruction. Biochim Biophys Acta. 1966 Jul 27;124(1):176–180. doi: 10.1016/0304-4165(66)90326-6. [DOI] [PubMed] [Google Scholar]
- Robinson M. G., Weiss J. J., Wheeler C. M. Irradiation of deoxyribonucleohistone solutions. II. Labilization of the DNA-histone linkage. Biochim Biophys Acta. 1966 Jul 27;124(1):181–186. doi: 10.1016/0304-4165(66)90327-8. [DOI] [PubMed] [Google Scholar]
- Shibutani S., Grollman A. P. Miscoding during DNA synthesis on damaged DNA templates catalysed by mammalian cell extracts. Cancer Lett. 1994 Aug 15;83(1-2):315–322. doi: 10.1016/0304-3835(94)90335-2. [DOI] [PubMed] [Google Scholar]
- Simpson J. A., Narita S., Gieseg S., Gebicki S., Gebicki J. M., Dean R. T. Long-lived reactive species on free-radical-damaged proteins. Biochem J. 1992 Mar 15;282(Pt 3):621–624. doi: 10.1042/bj2820621. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Symons M. C. Electron movement through proteins and DNA. Free Radic Biol Med. 1997;22(7):1271–1276. doi: 10.1016/s0891-5849(96)00548-5. [DOI] [PubMed] [Google Scholar]
- Terwilliger T. C., Eisenberg D. The structure of melittin. II. Interpretation of the structure. J Biol Chem. 1982 Jun 10;257(11):6016–6022. [PubMed] [Google Scholar]
- Wagner J., Kamiya H., Fuchs R. P. Leading versus lagging strand mutagenesis induced by 7,8-dihydro-8-oxo-2'-deoxyguanosine in Escherichia coli. J Mol Biol. 1997 Jan 24;265(3):302–309. doi: 10.1006/jmbi.1996.0740. [DOI] [PubMed] [Google Scholar]
- Wellman P. J., Davies B. T., Morien A., McMahon L. Modulation of feeding by hypothalamic paraventricular nucleus alpha 1- and alpha 2-adrenergic receptors. Life Sci. 1993;53(9):669–679. doi: 10.1016/0024-3205(93)90243-v. [DOI] [PubMed] [Google Scholar]
- Zaccolo M., Williams D. M., Brown D. M., Gherardi E. An approach to random mutagenesis of DNA using mixtures of triphosphate derivatives of nucleoside analogues. J Mol Biol. 1996 Feb 2;255(4):589–603. doi: 10.1006/jmbi.1996.0049. [DOI] [PubMed] [Google Scholar]