Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1999 Nov 15;344(Pt 1):135–143.

Identification and molecular characterization of acyl-CoA synthetase in human erythrocytes and erythroid precursors.

K T Malhotra 1, K Malhotra 1, B H Lubin 1, F A Kuypers 1
PMCID: PMC1220623  PMID: 10548543

Abstract

Full-length cDNA species encoding two forms of acyl-CoA synthetase from a K-562 human erythroleukaemic cell line were cloned, sequenced and expressed. The first form, named long-chain acyl-CoA synthetase 5 (LACS5), was found to be a novel, unreported, human acyl-CoA synthetase with high similarity to rat brain ACS2 (91% identical). The second form (66% identical with LACS5) was 97% identical with human liver LACS1. The LACS5 gene encodes a highly expressed 2.9 kb mRNA transcript in human haemopoietic stem cells from cord blood, bone marrow, reticulocytes and fetal blood cells derived from fetal liver. An additional 6.3 kb transcript is also found in these erythrocyte precursors; 2.9 and 9.6 kb transcripts of LACS5 are found in human brain, but transcripts are virtually absent from human heart, kidney, liver, lung, pancreas, spleen and skeletal muscle. The 78 kDa expressed LACS5 protein used the long-chain fatty acids palmitic acid, oleic acid and arachidonic acid as substrates. Antibodies directed against LACS5 cross-reacted with erythrocyte membranes. We conclude that early erythrocyte precursors express at least two different forms of acyl-CoA synthetase and that LACS5 is present in mature erythrocyte plasma membranes.

Full Text

The Full Text of this article is available as a PDF (364.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abe T., Fujino T., Fukuyama R., Minoshima S., Shimizu N., Toh H., Suzuki H., Yamamoto T. Human long-chain acyl-CoA synthetase: structure and chromosomal location. J Biochem. 1992 Jan;111(1):123–128. doi: 10.1093/oxfordjournals.jbchem.a123707. [DOI] [PubMed] [Google Scholar]
  2. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. Basic local alignment search tool. J Mol Biol. 1990 Oct 5;215(3):403–410. doi: 10.1016/S0022-2836(05)80360-2. [DOI] [PubMed] [Google Scholar]
  3. Andersson L. C., Nilsson K., Gahmberg C. G. K562--a human erythroleukemic cell line. Int J Cancer. 1979 Feb;23(2):143–147. doi: 10.1002/ijc.2910230202. [DOI] [PubMed] [Google Scholar]
  4. Arduini A., Mancinelli G., Radatti G. L., Dottori S., Molajoni F., Ramsay R. R. Role of carnitine and carnitine palmitoyltransferase as integral components of the pathway for membrane phospholipid fatty acid turnover in intact human erythrocytes. J Biol Chem. 1992 Jun 25;267(18):12673–12681. [PubMed] [Google Scholar]
  5. Bakken A. M., Farstad M., Holmsen H. Identity between palmitoyl-CoA synthetase and arachidonoyl-CoA synthetase in human platelet? Biochem J. 1991 Feb 15;274(Pt 1):145–152. doi: 10.1042/bj2740145. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Beaumelle B. D., Vial H. J. Acyl-CoA synthetase activity in Plasmodium knowlesi-infected erythrocytes displays peculiar substrate specificities. Biochim Biophys Acta. 1988 Jan 19;958(1):1–9. doi: 10.1016/0005-2760(88)90239-1. [DOI] [PubMed] [Google Scholar]
  7. Cao Y., Traer E., Zimmerman G. A., McIntyre T. M., Prescott S. M. Cloning, expression, and chromosomal localization of human long-chain fatty acid-CoA ligase 4 (FACL4). Genomics. 1998 Apr 15;49(2):327–330. doi: 10.1006/geno.1998.5268. [DOI] [PubMed] [Google Scholar]
  8. Das A. K., Dasgupta B., Bhattacharya R., Basu J. Purification and biochemical characterization of a protein-palmitoyl acyltransferase from human erythrocytes. J Biol Chem. 1997 Apr 25;272(17):11021–11025. doi: 10.1074/jbc.272.17.11021. [DOI] [PubMed] [Google Scholar]
  9. Davidson B. C., Cantrill R. C. Erythrocyte membrane acyl:CoA synthetase activity. FEBS Lett. 1985 Nov 25;193(1):69–74. doi: 10.1016/0014-5793(85)80081-8. [DOI] [PubMed] [Google Scholar]
  10. Fujino T., Kang M. J., Suzuki H., Iijima H., Yamamoto T. Molecular characterization and expression of rat acyl-CoA synthetase 3. J Biol Chem. 1996 Jul 12;271(28):16748–16752. doi: 10.1074/jbc.271.28.16748. [DOI] [PubMed] [Google Scholar]
  11. Fujino T., Yamamoto T. Cloning and functional expression of a novel long-chain acyl-CoA synthetase expressed in brain. J Biochem. 1992 Feb;111(2):197–203. doi: 10.1093/oxfordjournals.jbchem.a123737. [DOI] [PubMed] [Google Scholar]
  12. Ghosh B., Barbosa E., Singh I. Molecular cloning and sequencing of human palmitoyl-CoA ligase and its tissue specific expression. Mol Cell Biochem. 1995 Oct 4;151(1):77–81. doi: 10.1007/BF01076899. [DOI] [PubMed] [Google Scholar]
  13. Kang M. J., Fujino T., Sasano H., Minekura H., Yabuki N., Nagura H., Iijima H., Yamamoto T. T. A novel arachidonate-preferring acyl-CoA synthetase is present in steroidogenic cells of the rat adrenal, ovary, and testis. Proc Natl Acad Sci U S A. 1997 Apr 1;94(7):2880–2884. doi: 10.1073/pnas.94.7.2880. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. LANDS W. E., HART P. METABOLISM OF GLYCEROLIPIDS. VI. SPECIFICITIES OF ACYL COENZYME A: PHOSPHOLIPID ACYLTRANSFERASES. J Biol Chem. 1965 May;240:1905–1911. [PubMed] [Google Scholar]
  15. Malhotra K., Luehrsen K. R., Costello L. L., Raich T. J., Sim K., Foltz L., Davidson S., Xu H., Chen A., Yamanishi D. T. Identification of differentially expressed mRNAs in human fetal liver across gestation. Nucleic Acids Res. 1999 Feb 1;27(3):839–847. doi: 10.1093/nar/27.3.839. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Marra C. A., de Alaniz M. J. Acyl-CoA synthetase activity in liver microsomes from calcium-deficient rats. Lipids. 1999 Apr;34(4):343–354. doi: 10.1007/s11745-999-0372-x. [DOI] [PubMed] [Google Scholar]
  17. Minekura H., Fujino T., Kang M. J., Fujita T., Endo Y., Yamamoto T. T. Human acyl-coenzyme A synthetase 3 cDNA and localization of its gene (ACS3) to chromosome band 2q34-q35. Genomics. 1997 May 15;42(1):180–181. doi: 10.1006/geno.1997.4710. [DOI] [PubMed] [Google Scholar]
  18. Mulder E., van Deenen L. L. Metabolism of red-cell lipids. I. Incorporation in vitro of fatty acids into phospholipids from mature erythrocytes. Biochim Biophys Acta. 1965 Jul 7;106(1):106–117. doi: 10.1016/0005-2760(65)90099-8. [DOI] [PubMed] [Google Scholar]
  19. Oikawa E., Iijima H., Suzuki T., Sasano H., Sato H., Kamataki A., Nagura H., Kang M. J., Fujino T., Suzuki H. A novel acyl-CoA synthetase, ACS5, expressed in intestinal epithelial cells and proliferating preadipocytes. J Biochem. 1998 Sep;124(3):679–685. doi: 10.1093/oxfordjournals.jbchem.a022165. [DOI] [PubMed] [Google Scholar]
  20. Piccini M., Vitelli F., Bruttini M., Pober B. R., Jonsson J. J., Villanova M., Zollo M., Borsani G., Ballabio A., Renieri A. FACL4, a new gene encoding long-chain acyl-CoA synthetase 4, is deleted in a family with Alport syndrome, elliptocytosis, and mental retardation. Genomics. 1998 Feb 1;47(3):350–358. doi: 10.1006/geno.1997.5104. [DOI] [PubMed] [Google Scholar]
  21. Renooij W., Van Golde L. M., Zwaal R. F., Roelofsen B., Van Deenen L. L. Preferential incorporation of fatty acids at the inside of human erythrocyte membranes. Biochim Biophys Acta. 1974 Sep 6;363(2):287–292. doi: 10.1016/0005-2736(74)90069-8. [DOI] [PubMed] [Google Scholar]
  22. Sheibani N., Frazier W. A. Direct use of synthetic peptides for antiserum production. Biotechniques. 1998 Jul;25(1):28-30, 32. doi: 10.2144/98251bm05. [DOI] [PubMed] [Google Scholar]
  23. Suzuki H., Kawarabayasi Y., Kondo J., Abe T., Nishikawa K., Kimura S., Hashimoto T., Yamamoto T. Structure and regulation of rat long-chain acyl-CoA synthetase. J Biol Chem. 1990 May 25;265(15):8681–8685. [PubMed] [Google Scholar]
  24. Wilson D. B., Prescott S. M., Majerus P. W. Discovery of an arachidonoyl coenzyme A synthetase in human platelets. J Biol Chem. 1982 Apr 10;257(7):3510–3515. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES