Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1999 Nov 15;344(Pt 1):145–152.

DNA-binding activity of the transcription factor upstream stimulatory factor 1 (USF-1) is regulated by cyclin-dependent phosphorylation.

E Cheung 1, P Mayr 1, F Coda-Zabetta 1, P G Woodman 1, D S Boam 1
PMCID: PMC1220624  PMID: 10548544

Abstract

The ubiquitous transcription factor upstream stimulatory factor (USF) 1 is a member of the bzHLH (leucine zipper-basic-helix-loop-helix) family, which is structurally related to the Myc family of proteins. It plays a role in the regulation of many genes, including the cyclin B1 gene, which is active during the G2/M and M phases of the cell cycle and may also play a role in the regulation of cellular proliferation. We show that the affinity of recombinant USF-1 for DNA is greatly increased by treatment with active cyclin A2-p34(cdc2) or cyclin B1-p34(cdc2) complexes and that its interaction with DNA is dependent on p34(cdc2)-mediated phosphorylation. We have localized the phosphorylation site(s) to a region that lies outside the minimal DNA-binding domain but overlaps with the previously identified USF-specific region. Deletion studies of USF-1 suggest that amino acids 143-197 regulate DNA-binding activity in a phosphorylation-dependent manner.

Full Text

The Full Text of this article is available as a PDF (281.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alvarez E., Northwood I. C., Gonzalez F. A., Latour D. A., Seth A., Abate C., Curran T., Davis R. J. Pro-Leu-Ser/Thr-Pro is a consensus primary sequence for substrate protein phosphorylation. Characterization of the phosphorylation of c-myc and c-jun proteins by an epidermal growth factor receptor threonine 669 protein kinase. J Biol Chem. 1991 Aug 15;266(23):15277–15285. [PubMed] [Google Scholar]
  2. Aperlo C., Boulukos K. E., Pognonec P. The basic region/helix-loop-helix/leucine repeat transcription factor USF interferes with Ras transformation. Eur J Biochem. 1996 Oct 1;241(1):249–253. doi: 10.1111/j.1432-1033.1996.0249t.x. [DOI] [PubMed] [Google Scholar]
  3. Berger A., Cultaro C. M., Segal S., Spiegel S. The potent lipid mitogen sphingosylphosphocholine activates the DNA binding activity of upstream stimulating factor (USF), a basic helix-loop-helix-zipper protein. Biochim Biophys Acta. 1998 Feb 16;1390(2):225–236. doi: 10.1016/s0005-2760(97)00180-x. [DOI] [PubMed] [Google Scholar]
  4. Boam D. S., Davidson I., Chambon P. A TATA-less promoter containing binding sites for ubiquitous transcription factors mediates cell type-specific regulation of the gene for transcription enhancer factor-1 (TEF-1). J Biol Chem. 1995 Aug 18;270(33):19487–19494. doi: 10.1074/jbc.270.33.19487. [DOI] [PubMed] [Google Scholar]
  5. Cogswell J. P., Godlevski M. M., Bonham M., Bisi J., Babiss L. Upstream stimulatory factor regulates expression of the cell cycle-dependent cyclin B1 gene promoter. Mol Cell Biol. 1995 May;15(5):2782–2790. doi: 10.1128/mcb.15.5.2782. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Farina A., Gaetano C., Crescenzi M., Puccini F., Manni I., Sacchi A., Piaggio G. The inhibition of cyclin B1 gene transcription in quiescent NIH3T3 cells is mediated by an E-box. Oncogene. 1996 Sep 19;13(6):1287–1296. [PubMed] [Google Scholar]
  7. Frenkel S., Kay G., Nechushtan H., Razin E. Nuclear translocation of upstream stimulating factor 2 (USF2) in activated mast cells: a possible role in their survival. J Immunol. 1998 Sep 15;161(6):2881–2887. [PubMed] [Google Scholar]
  8. Galibert M. D., Boucontet L., Goding C. R., Meo T. Recognition of the E-C4 element from the C4 complement gene promoter by the upstream stimulatory factor-1 transcription factor. J Immunol. 1997 Dec 15;159(12):6176–6183. [PubMed] [Google Scholar]
  9. Gottesfeld J. M., Wolf V. J., Dang T., Forbes D. J., Hartl P. Mitotic repression of RNA polymerase III transcription in vitro mediated by phosphorylation of a TFIIIB component. Science. 1994 Jan 7;263(5143):81–84. doi: 10.1126/science.8272869. [DOI] [PubMed] [Google Scholar]
  10. Hartl P., Gottesfeld J., Forbes D. J. Mitotic repression of transcription in vitro. J Cell Biol. 1993 Feb;120(3):613–624. doi: 10.1083/jcb.120.3.613. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hwang A., Maity A., McKenna W. G., Muschel R. J. Cell cycle-dependent regulation of the cyclin B1 promoter. J Biol Chem. 1995 Nov 24;270(47):28419–28424. doi: 10.1074/jbc.270.47.28419. [DOI] [PubMed] [Google Scholar]
  12. Leresche A., Wolf V. J., Gottesfeld J. M. Repression of RNA polymerase II and III transcription during M phase of the cell cycle. Exp Cell Res. 1996 Dec 15;229(2):282–288. doi: 10.1006/excr.1996.0373. [DOI] [PubMed] [Google Scholar]
  13. Lucibello F. C., Truss M., Zwicker J., Ehlert F., Beato M., Müller R. Periodic cdc25C transcription is mediated by a novel cell cycle-regulated repressor element (CDE). EMBO J. 1995 Jan 3;14(1):132–142. doi: 10.1002/j.1460-2075.1995.tb06983.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Luo X., Sawadogo M. Antiproliferative properties of the USF family of helix-loop-helix transcription factors. Proc Natl Acad Sci U S A. 1996 Feb 6;93(3):1308–1313. doi: 10.1073/pnas.93.3.1308. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Luo X., Sawadogo M. Functional domains of the transcription factor USF2: atypical nuclear localization signals and context-dependent transcriptional activation domains. Mol Cell Biol. 1996 Apr;16(4):1367–1375. doi: 10.1128/mcb.16.4.1367. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Lüscher B., Eisenman R. N. Mitosis-specific phosphorylation of the nuclear oncoproteins Myc and Myb. J Cell Biol. 1992 Aug;118(4):775–784. doi: 10.1083/jcb.118.4.775. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Lüscher B., Kuenzel E. A., Krebs E. G., Eisenman R. N. Myc oncoproteins are phosphorylated by casein kinase II. EMBO J. 1989 Apr;8(4):1111–1119. doi: 10.1002/j.1460-2075.1989.tb03481.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Maekawa T., Sudo T., Kurimoto M., Ishii S. USF-related transcription factor, HIV-TF1, stimulates transcription of human immunodeficiency virus-1. Nucleic Acids Res. 1991 Sep 11;19(17):4689–4694. doi: 10.1093/nar/19.17.4689. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Mayr P. S., Allan V. J., Woodman P. G. Phosphorylation of p97(VCP) and p47 in vitro by p34cdc2 kinase. Eur J Cell Biol. 1999 Apr;78(4):224–232. doi: 10.1016/S0171-9335(99)80055-7. [DOI] [PubMed] [Google Scholar]
  20. Miltenberger R. J., Sukow K. A., Farnham P. J. An E-box-mediated increase in cad transcription at the G1/S-phase boundary is suppressed by inhibitory c-Myc mutants. Mol Cell Biol. 1995 May;15(5):2527–2535. doi: 10.1128/mcb.15.5.2527. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. North S., Espanel X., Bantignies F., Viollet B., Vallet V., Jalinot P., Brun G., Gillet G. Regulation of cdc2 gene expression by the upstream stimulatory factors (USFs). Oncogene. 1999 Mar 18;18(11):1945–1955. doi: 10.1038/sj.onc.1202506. [DOI] [PubMed] [Google Scholar]
  22. Pines J. Cyclins and cyclin-dependent kinases: a biochemical view. Biochem J. 1995 Jun 15;308(Pt 3):697–711. doi: 10.1042/bj3080697. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Pines J. The cell cycle kinases. Semin Cancer Biol. 1994 Aug;5(4):305–313. [PubMed] [Google Scholar]
  24. Pognonec P., Roeder R. G. Recombinant 43-kDa USF binds to DNA and activates transcription in a manner indistinguishable from that of natural 43/44-kDa USF. Mol Cell Biol. 1991 Oct;11(10):5125–5136. doi: 10.1128/mcb.11.10.5125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Qyang Y., Luo X., Lu T., Ismail P. M., Krylov D., Vinson C., Sawadogo M. Cell-type-dependent activity of the ubiquitous transcription factor USF in cellular proliferation and transcriptional activation. Mol Cell Biol. 1999 Feb;19(2):1508–1517. doi: 10.1128/mcb.19.2.1508. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Reisman D., Rotter V. The helix-loop-helix containing transcription factor USF binds to and transactivates the promoter of the p53 tumor suppressor gene. Nucleic Acids Res. 1993 Jan 25;21(2):345–350. doi: 10.1093/nar/21.2.345. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Roy A. L., Du H., Gregor P. D., Novina C. D., Martinez E., Roeder R. G. Cloning of an inr- and E-box-binding protein, TFII-I, that interacts physically and functionally with USF1. EMBO J. 1997 Dec 1;16(23):7091–7104. doi: 10.1093/emboj/16.23.7091. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Segil N., Guermah M., Hoffmann A., Roeder R. G., Heintz N. Mitotic regulation of TFIID: inhibition of activator-dependent transcription and changes in subcellular localization. Genes Dev. 1996 Oct 1;10(19):2389–2400. doi: 10.1101/gad.10.19.2389. [DOI] [PubMed] [Google Scholar]
  29. Seth A., Alvarez E., Gupta S., Davis R. J. A phosphorylation site located in the NH2-terminal domain of c-Myc increases transactivation of gene expression. J Biol Chem. 1991 Dec 15;266(35):23521–23524. [PubMed] [Google Scholar]
  30. Sieweke M. H., Tekotte H., Jarosch U., Graf T. Cooperative interaction of ets-1 with USF-1 required for HIV-1 enhancer activity in T cells. EMBO J. 1998 Mar 16;17(6):1728–1739. doi: 10.1093/emboj/17.6.1728. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Wilhelm H., Andersen S. S., Karsenti E. Purification of recombinant cyclin B1/cdc2 kinase from Xenopus egg extracts. Methods Enzymol. 1997;283:12–28. doi: 10.1016/s0076-6879(97)83004-2. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES