Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1999 Nov 15;344(Pt 1):189–197.

Characterization of the structure and regulation of two novel isoforms of serum- and glucocorticoid-induced protein kinase.

T Kobayashi 1, M Deak 1, N Morrice 1, P Cohen 1
PMCID: PMC1220630  PMID: 10548550

Abstract

The catalytic domain of serum- and glucocorticoid-induced protein kinase (SGK) is 54% identical with protein kinase B (PKB) and, like PKB, is activated in vitro by 3-phosphoinositide-dependent protein kinase-1 (PDK1) and in vivo in response to signals that activate phosphatidylinositol (PI) 3-kinase. Here we identify two novel isoforms of SGK, termed SGK2 and SGK3, whose catalytic domains share 80% amino acid sequence identity with each other and with SGK (renamed SGK1). Like SGK1, the mRNA encoding SGK3 is expressed in all tissues examined, but SGK2 mRNA is only present at significant levels in liver, kidney and pancreas and, at lower levels, in the brain. The levels of SGK2 mRNA in H4IIE cells and SGK3 mRNA in Rat2 fibroblasts are not increased by stimulation with serum or dexamethasone, whereas the level of SGK1 mRNA is increased greatly. SGK2 and SGK3 are activated in vitro by PDK1, albeit more slowly than SGK1, and their activation is accompanied by the phosphorylation of Thr(193) and Thr(253) respectively, the residues equivalent to the Thr in the 'activation loop' of PKB that is targeted by PDK1. The PDK1-catalysed phosphorylation and activation of SGK2 and SGK3, like SGK1, is greatly potentiated by mutating Ser(356) and Ser(419) respectively to Asp, these residues being equivalent to the C-terminal phosphorylation site of PKB. Like SGK1, SGK2 and SGK3 are activated 5-fold via a phosphorylation mechanism when cells are exposed to H(2)O(2) but, in contrast with SGK1, activation is only suppressed partially by inhibitors of PI 3-kinase. SGK2 and SGK3 are activated to a smaller extent by insulin-like growth factor-1 (2-fold) than SGK1 (5-fold). Like PKB and SGK1, SGK2 and SGK3 preferentially phosphorylate Ser and Thr residues that lie in Arg-Xaa-Arg-Xaa-Xaa-Ser/Thr motifs.

Full Text

The Full Text of this article is available as a PDF (316.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alessi D. R., Andjelkovic M., Caudwell B., Cron P., Morrice N., Cohen P., Hemmings B. A. Mechanism of activation of protein kinase B by insulin and IGF-1. EMBO J. 1996 Dec 2;15(23):6541–6551. [PMC free article] [PubMed] [Google Scholar]
  2. Alessi D. R., Caudwell F. B., Andjelkovic M., Hemmings B. A., Cohen P. Molecular basis for the substrate specificity of protein kinase B; comparison with MAPKAP kinase-1 and p70 S6 kinase. FEBS Lett. 1996 Dec 16;399(3):333–338. doi: 10.1016/s0014-5793(96)01370-1. [DOI] [PubMed] [Google Scholar]
  3. Alessi D. R., Cohen P. Mechanism of activation and function of protein kinase B. Curr Opin Genet Dev. 1998 Feb;8(1):55–62. doi: 10.1016/s0959-437x(98)80062-2. [DOI] [PubMed] [Google Scholar]
  4. Alessi D. R., Deak M., Casamayor A., Caudwell F. B., Morrice N., Norman D. G., Gaffney P., Reese C. B., MacDougall C. N., Harbison D. 3-Phosphoinositide-dependent protein kinase-1 (PDK1): structural and functional homology with the Drosophila DSTPK61 kinase. Curr Biol. 1997 Oct 1;7(10):776–789. doi: 10.1016/s0960-9822(06)00336-8. [DOI] [PubMed] [Google Scholar]
  5. Alessi D. R., James S. R., Downes C. P., Holmes A. B., Gaffney P. R., Reese C. B., Cohen P. Characterization of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase Balpha. Curr Biol. 1997 Apr 1;7(4):261–269. doi: 10.1016/s0960-9822(06)00122-9. [DOI] [PubMed] [Google Scholar]
  6. Alessi D. R., Kozlowski M. T., Weng Q. P., Morrice N., Avruch J. 3-Phosphoinositide-dependent protein kinase 1 (PDK1) phosphorylates and activates the p70 S6 kinase in vivo and in vitro. Curr Biol. 1998 Jan 15;8(2):69–81. doi: 10.1016/s0960-9822(98)70037-5. [DOI] [PubMed] [Google Scholar]
  7. Balendran A., Casamayor A., Deak M., Paterson A., Gaffney P., Currie R., Downes C. P., Alessi D. R. PDK1 acquires PDK2 activity in the presence of a synthetic peptide derived from the carboxyl terminus of PRK2. Curr Biol. 1999 Apr 22;9(8):393–404. doi: 10.1016/s0960-9822(99)80186-9. [DOI] [PubMed] [Google Scholar]
  8. Cohen P. The Croonian Lecture 1998. Identification of a protein kinase cascade of major importance in insulin signal transduction. Philos Trans R Soc Lond B Biol Sci. 1999 Feb 28;354(1382):485–495. doi: 10.1098/rstb.1999.0399. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Cuenda A., Alonso G., Morrice N., Jones M., Meier R., Cohen P., Nebreda A. R. Purification and cDNA cloning of SAPKK3, the major activator of RK/p38 in stress- and cytokine-stimulated monocytes and epithelial cells. EMBO J. 1996 Aug 15;15(16):4156–4164. [PMC free article] [PubMed] [Google Scholar]
  10. Dutil E. M., Toker A., Newton A. C. Regulation of conventional protein kinase C isozymes by phosphoinositide-dependent kinase 1 (PDK-1). Curr Biol. 1998 Dec 17;8(25):1366–1375. doi: 10.1016/s0960-9822(98)00017-7. [DOI] [PubMed] [Google Scholar]
  11. Hollister R. D., Page K. J., Hyman B. T. Distribution of the messenger RNA for the extracellularly regulated kinases 1, 2 and 3 in rat brain: effects of excitotoxic hippocampal lesions. Neuroscience. 1997 Aug;79(4):1111–1119. doi: 10.1016/s0306-4522(97)00014-6. [DOI] [PubMed] [Google Scholar]
  12. Imaizumi K., Tsuda M., Wanaka A., Tohyama M., Takagi T. Differential expression of sgk mRNA, a member of the Ser/Thr protein kinase gene family, in rat brain after CNS injury. Brain Res Mol Brain Res. 1994 Oct;26(1-2):189–196. doi: 10.1016/0169-328x(94)90090-6. [DOI] [PubMed] [Google Scholar]
  13. Kobayashi T., Cohen P. Activation of serum- and glucocorticoid-regulated protein kinase by agonists that activate phosphatidylinositide 3-kinase is mediated by 3-phosphoinositide-dependent protein kinase-1 (PDK1) and PDK2. Biochem J. 1999 Apr 15;339(Pt 2):319–328. [PMC free article] [PubMed] [Google Scholar]
  14. Le Good J. A., Ziegler W. H., Parekh D. B., Alessi D. R., Cohen P., Parker P. J. Protein kinase C isotypes controlled by phosphoinositide 3-kinase through the protein kinase PDK1. Science. 1998 Sep 25;281(5385):2042–2045. doi: 10.1126/science.281.5385.2042. [DOI] [PubMed] [Google Scholar]
  15. Maiyar A. C., Huang A. J., Phu P. T., Cha H. H., Firestone G. L. p53 stimulates promoter activity of the sgk. serum/glucocorticoid-inducible serine/threonine protein kinase gene in rodent mammary epithelial cells. J Biol Chem. 1996 May 24;271(21):12414–12422. doi: 10.1074/jbc.271.21.12414. [DOI] [PubMed] [Google Scholar]
  16. Meier R., Thelen M., Hemmings B. A. Inactivation and dephosphorylation of protein kinase Balpha (PKBalpha) promoted by hyperosmotic stress. EMBO J. 1998 Dec 15;17(24):7294–7303. doi: 10.1093/emboj/17.24.7294. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Morrice N. A., Powis S. J. A role for the thiol-dependent reductase ERp57 in the assembly of MHC class I molecules. Curr Biol. 1998 Jun 4;8(12):713–716. doi: 10.1016/s0960-9822(98)70279-9. [DOI] [PubMed] [Google Scholar]
  18. Náray-Fejes-Tóth A., Canessa C., Cleaveland E. S., Aldrich G., Fejes-Tóth G. sgk is an aldosterone-induced kinase in the renal collecting duct. Effects on epithelial na+ channels. J Biol Chem. 1999 Jun 11;274(24):16973–16978. doi: 10.1074/jbc.274.24.16973. [DOI] [PubMed] [Google Scholar]
  19. Park J., Leong M. L., Buse P., Maiyar A. C., Firestone G. L., Hemmings B. A. Serum and glucocorticoid-inducible kinase (SGK) is a target of the PI 3-kinase-stimulated signaling pathway. EMBO J. 1999 Jun 1;18(11):3024–3033. doi: 10.1093/emboj/18.11.3024. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Pullen N., Dennis P. B., Andjelkovic M., Dufner A., Kozma S. C., Hemmings B. A., Thomas G. Phosphorylation and activation of p70s6k by PDK1. Science. 1998 Jan 30;279(5351):707–710. doi: 10.1126/science.279.5351.707. [DOI] [PubMed] [Google Scholar]
  21. Richards J. S., Fitzpatrick S. L., Clemens J. W., Morris J. K., Alliston T., Sirois J. Ovarian cell differentiation: a cascade of multiple hormones, cellular signals, and regulated genes. Recent Prog Horm Res. 1995;50:223–254. doi: 10.1016/b978-0-12-571150-0.50014-7. [DOI] [PubMed] [Google Scholar]
  22. Thompson J. D., Higgins D. G., Gibson T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994 Nov 11;22(22):4673–4680. doi: 10.1093/nar/22.22.4673. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Waldegger S., Barth P., Raber G., Lang F. Cloning and characterization of a putative human serine/threonine protein kinase transcriptionally modified during anisotonic and isotonic alterations of cell volume. Proc Natl Acad Sci U S A. 1997 Apr 29;94(9):4440–4445. doi: 10.1073/pnas.94.9.4440. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Webster M. K., Goya L., Firestone G. L. Immediate-early transcriptional regulation and rapid mRNA turnover of a putative serine/threonine protein kinase. J Biol Chem. 1993 Jun 5;268(16):11482–11485. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES