Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1999 Nov 15;344(Pt 1):205–209.

Cysteine residues in the Na+/dicarboxylate co-transporter, NaDC-1.

A M Pajor 1, S J Krajewski 1, N Sun 1, R Gangula 1
PMCID: PMC1220632  PMID: 10548552

Abstract

The role of cysteine residues in the Na(+)/dicarboxylate co-transporter (NaDC-1) was tested using site-directed mutagenesis. The transport activity of NaDC-1 was not affected by mutagenesis of any of the 11 cysteine residues, indicating that no individual cysteine residue is necessary for function. NaDC-1 is sensitive to inhibition by the impermeant cysteine-specific reagent, p-chloromercuribenzenesulphonate (pCMBS). The pCMBS-sensitive residues in NaDC-1 are Cys-227, found in transmembrane domain 5, and Cys-476, located in transmembrane domain 9. Although cysteine residues are not required for function in NaDC-1, their presence appears to be important for protein stability or trafficking to the plasma membrane. There was a direct relationship between the number of cysteine residues, regardless of location, and the transport activity and expression of NaDC-1. The results indicate that mutagenesis of multiple cysteine residues in NaDC-1 may alter the shape or configuration of the protein, leading to alterations in protein trafficking or stability.

Full Text

The Full Text of this article is available as a PDF (145.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bindslev N., Wright E. M. Histidyl residues at the active site of the Na/succinate co-transporter in rabbit renal brush borders. J Membr Biol. 1984;81(2):159–170. doi: 10.1007/BF01868980. [DOI] [PubMed] [Google Scholar]
  2. Chen J. G., Liu-Chen S., Rudnick G. External cysteine residues in the serotonin transporter. Biochemistry. 1997 Feb 11;36(6):1479–1486. doi: 10.1021/bi962256g. [DOI] [PubMed] [Google Scholar]
  3. Griffith D. A., Pajor A. M. Acidic residues involved in cation and substrate interactions in the Na+/dicarboxylate cotransporter, NaDC-1. Biochemistry. 1999 Jun 8;38(23):7524–7531. doi: 10.1021/bi990076b. [DOI] [PubMed] [Google Scholar]
  4. Kunkel T. A. Rapid and efficient site-specific mutagenesis without phenotypic selection. Proc Natl Acad Sci U S A. 1985 Jan;82(2):488–492. doi: 10.1073/pnas.82.2.488. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Pajor A. M. Sequence and functional characterization of a renal sodium/dicarboxylate cotransporter. J Biol Chem. 1995 Mar 17;270(11):5779–5785. doi: 10.1074/jbc.270.11.5779. [DOI] [PubMed] [Google Scholar]
  6. Pajor A. M. Sodium-coupled transporters for Krebs cycle intermediates. Annu Rev Physiol. 1999;61:663–682. doi: 10.1146/annurev.physiol.61.1.663. [DOI] [PubMed] [Google Scholar]
  7. Pajor A. M., Sun N., Bai L., Markovich D., Sule P. The substrate recognition domain in the Na+/dicarboxylate and Na+/sulfate cotransporters is located in the carboxy-terminal portion of the protein. Biochim Biophys Acta. 1998 Mar 6;1370(1):98–106. doi: 10.1016/s0005-2736(97)00249-6. [DOI] [PubMed] [Google Scholar]
  8. Pajor A. M., Sun N. Characterization of the rabbit renal Na(+)-dicarboxylate cotransporter using antifusion protein antibodies. Am J Physiol. 1996 Dec;271(6 Pt 1):C1808–C1816. doi: 10.1152/ajpcell.1996.271.6.C1808. [DOI] [PubMed] [Google Scholar]
  9. Pajor A. M., Sun N., Valmonte H. G. Mutational analysis of histidine residues in the rabbit Na+/dicarboxylate co-transporter NaDC-1. Biochem J. 1998 Apr 1;331(Pt 1):257–264. doi: 10.1042/bj3310257. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Sur C., Schloss P., Betz H. The rat serotonin transporter: identification of cysteine residues important for substrate transport. Biochem Biophys Res Commun. 1997 Dec 8;241(1):68–72. doi: 10.1006/bbrc.1997.7771. [DOI] [PubMed] [Google Scholar]
  11. Yan R. T., Maloney P. C. Identification of a residue in the translocation pathway of a membrane carrier. Cell. 1993 Oct 8;75(1):37–44. [PubMed] [Google Scholar]
  12. Yan R. T., Maloney P. C. Residues in the pathway through a membrane transporter. Proc Natl Acad Sci U S A. 1995 Jun 20;92(13):5973–5976. doi: 10.1073/pnas.92.13.5973. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES