Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1999 Nov 15;344(Pt 1):211–219.

Functional analysis of the human NRAMP family expressed in fission yeast.

M Tabuchi 1, T Yoshida 1, K Takegawa 1, F Kishi 1
PMCID: PMC1220633  PMID: 10548553

Abstract

The Bcg/Ity/Lsh locus in the mouse genome regulates macrophage activation for antimicrobial activity against intracellular pathogens, and the positional cloning of this locus identified the Nramp1 (natural resistance-associated macrophage protein) gene. Nramp2 was initially isolated as a homologue of Nramp1. Recently, the rat divalent metal transporter DMT1 was identified electrophysiologically, and was found to be an isoform of Nramp2, a mutation which was subsequently identified in rats suffering from hereditary iron-deficiency anaemia. Despite the 64% amino acid sequence identity of Nramp1 and Nramp2, no divalent metal transport activity has yet been detected from Nramp1, and the function of Nramp1 on the molecular level is still unclear. To investigate the divalent metal transport activity of NRAMP molecules, we constructed four chimeric NRAMP genes by swapping the domains of human NRAMP1 and NRAMP2 with each other. The functional characteristics of wild-type NRAMP1, NRAMP2 and their chimeras were determined by expression in the divalent metal transporter-disrupted strain of fission yeast, pdt1Delta, and we analysed the divalent metal transport activity by complementation of the EGTA- and pH-sensitive phenotype of pdt1Delta. Replacement of the N-terminal cytoplasmic domain of NRAMP2 with the NRAMP1 counterpart resulted in inactive chimeras, indicating that the functional difference between NRAMP1 and NRAMP2 is located in this region. However, results obtained with the reverse construct and other chimeras indicated that these regions are not solely responsible for the differences in EGTA- and pH-sensitivity of NRAMP1 and NRAMP2. These findings indicate that NRAMP1 itself cannot represent the divalent metal transport activity in S. pombe and the additional protein segments of the molecules located elsewhere in NRAMP1 are also functionally distinct from their NRAMP2 counterparts.

Full Text

The Full Text of this article is available as a PDF (349.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Atkinson P. G., Blackwell J. M., Barton C. H. Nramp1 locus encodes a 65 kDa interferon-gamma-inducible protein in murine macrophages. Biochem J. 1997 Aug 1;325(Pt 3):779–786. doi: 10.1042/bj3250779. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bairoch A. PROSITE: a dictionary of sites and patterns in proteins. Nucleic Acids Res. 1991 Apr 25;19 (Suppl):2241–2245. doi: 10.1093/nar/19.suppl.2241. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Barton C. H., White J. K., Roach T. I., Blackwell J. M. NH2-terminal sequence of macrophage-expressed natural resistance-associated macrophage protein (Nramp) encodes a proline/serine-rich putative Src homology 3-binding domain. J Exp Med. 1994 May 1;179(5):1683–1687. doi: 10.1084/jem.179.5.1683. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Barylko B., Binns D., Lin K. M., Atkinson M. A., Jameson D. M., Yin H. L., Albanesi J. P. Synergistic activation of dynamin GTPase by Grb2 and phosphoinositides. J Biol Chem. 1998 Feb 6;273(6):3791–3797. doi: 10.1074/jbc.273.6.3791. [DOI] [PubMed] [Google Scholar]
  5. Blackwell J. M., Barton C. H., White J. K., Searle S., Baker A. M., Williams H., Shaw M. A. Genomic organization and sequence of the human NRAMP gene: identification and mapping of a promoter region polymorphism. Mol Med. 1995 Jan;1(2):194–205. [PMC free article] [PubMed] [Google Scholar]
  6. Cellier M., Belouchi A., Gros P. Resistance to intracellular infections: comparative genomic analysis of Nramp. Trends Genet. 1996 Jun;12(6):201–204. doi: 10.1016/0168-9525(96)30042-5. [DOI] [PubMed] [Google Scholar]
  7. Cellier M., Govoni G., Vidal S., Kwan T., Groulx N., Liu J., Sanchez F., Skamene E., Schurr E., Gros P. Human natural resistance-associated macrophage protein: cDNA cloning, chromosomal mapping, genomic organization, and tissue-specific expression. J Exp Med. 1994 Nov 1;180(5):1741–1752. doi: 10.1084/jem.180.5.1741. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Cellier M., Privé G., Belouchi A., Kwan T., Rodrigues V., Chia W., Gros P. Nramp defines a family of membrane proteins. Proc Natl Acad Sci U S A. 1995 Oct 24;92(22):10089–10093. doi: 10.1073/pnas.92.22.10089. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Chikashige Y., Ding D. Q., Funabiki H., Haraguchi T., Mashiko S., Yanagida M., Hiraoka Y. Telomere-led premeiotic chromosome movement in fission yeast. Science. 1994 Apr 8;264(5156):270–273. doi: 10.1126/science.8146661. [DOI] [PubMed] [Google Scholar]
  10. Fleming M. D., Romano M. A., Su M. A., Garrick L. M., Garrick M. D., Andrews N. C. Nramp2 is mutated in the anemic Belgrade (b) rat: evidence of a role for Nramp2 in endosomal iron transport. Proc Natl Acad Sci U S A. 1998 Feb 3;95(3):1148–1153. doi: 10.1073/pnas.95.3.1148. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Fleming M. D., Trenor C. C., 3rd, Su M. A., Foernzler D., Beier D. R., Dietrich W. F., Andrews N. C. Microcytic anaemia mice have a mutation in Nramp2, a candidate iron transporter gene. Nat Genet. 1997 Aug;16(4):383–386. doi: 10.1038/ng0897-383. [DOI] [PubMed] [Google Scholar]
  12. Gottesman M. M., Pastan I. Biochemistry of multidrug resistance mediated by the multidrug transporter. Annu Rev Biochem. 1993;62:385–427. doi: 10.1146/annurev.bi.62.070193.002125. [DOI] [PubMed] [Google Scholar]
  13. Grabs D., Slepnev V. I., Songyang Z., David C., Lynch M., Cantley L. C., De Camilli P. The SH3 domain of amphiphysin binds the proline-rich domain of dynamin at a single site that defines a new SH3 binding consensus sequence. J Biol Chem. 1997 May 16;272(20):13419–13425. doi: 10.1074/jbc.272.20.13419. [DOI] [PubMed] [Google Scholar]
  14. Gruenheid S., Cellier M., Vidal S., Gros P. Identification and characterization of a second mouse Nramp gene. Genomics. 1995 Jan 20;25(2):514–525. doi: 10.1016/0888-7543(95)80053-o. [DOI] [PubMed] [Google Scholar]
  15. Gruenheid S., Pinner E., Desjardins M., Gros P. Natural resistance to infection with intracellular pathogens: the Nramp1 protein is recruited to the membrane of the phagosome. J Exp Med. 1997 Feb 17;185(4):717–730. doi: 10.1084/jem.185.4.717. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Gunshin H., Mackenzie B., Berger U. V., Gunshin Y., Romero M. F., Boron W. F., Nussberger S., Gollan J. L., Hediger M. A. Cloning and characterization of a mammalian proton-coupled metal-ion transporter. Nature. 1997 Jul 31;388(6641):482–488. doi: 10.1038/41343. [DOI] [PubMed] [Google Scholar]
  17. Herskovits J. S., Shpetner H. S., Burgess C. C., Vallee R. B. Microtubules and Src homology 3 domains stimulate the dynamin GTPase via its C-terminal domain. Proc Natl Acad Sci U S A. 1993 Dec 15;90(24):11468–11472. doi: 10.1073/pnas.90.24.11468. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kishi F. Isolation and characterization of human Nramp cDNA. Biochem Biophys Res Commun. 1994 Nov 15;204(3):1074–1080. doi: 10.1006/bbrc.1994.2572. [DOI] [PubMed] [Google Scholar]
  19. Kishi F., Nobumoto M. Identification of natural resistance-associated macrophage protein in peripheral blood lymphocytes. Immunol Lett. 1995 Jul-Aug;47(1-2):93–96. doi: 10.1016/0165-2478(95)00070-l. [DOI] [PubMed] [Google Scholar]
  20. Kishi F., Tabuchi M. Complete nucleotide sequence of human NRAMP2 cDNA. Mol Immunol. 1997 Aug-Sep;34(12-13):839–842. doi: 10.1016/s0161-5890(97)00110-7. [DOI] [PubMed] [Google Scholar]
  21. Kishi F., Tabuchi M. Human natural resistance-associated macrophage protein 2: gene cloning and protein identification. Biochem Biophys Res Commun. 1998 Oct 29;251(3):775–783. doi: 10.1006/bbrc.1998.9415. [DOI] [PubMed] [Google Scholar]
  22. Kishi F., Tanizawa Y., Nobumoto M. Structural analysis of human natural resistance-associated macrophage protein 1 promoter. Mol Immunol. 1996 Feb;33(3):265–268. doi: 10.1016/0161-5890(95)00144-1. [DOI] [PubMed] [Google Scholar]
  23. Kishi F., Yoshida T., Aiso S. Location of NRAMP1 molecule on the plasma membrane and its association with microtubules. Mol Immunol. 1996 Nov;33(16):1241–1246. doi: 10.1016/s0161-5890(96)00088-0. [DOI] [PubMed] [Google Scholar]
  24. Kleid D. G., Yansura D., Small B., Dowbenko D., Moore D. M., Grubman M. J., McKercher P. D., Morgan D. O., Robertson B. H., Bachrach H. L. Cloned viral protein vaccine for foot-and-mouth disease: responses in cattle and swine. Science. 1981 Dec 4;214(4525):1125–1129. doi: 10.1126/science.6272395. [DOI] [PubMed] [Google Scholar]
  25. Kunkel T. A., Bebenek K., McClary J. Efficient site-directed mutagenesis using uracil-containing DNA. Methods Enzymol. 1991;204:125–139. doi: 10.1016/0076-6879(91)04008-c. [DOI] [PubMed] [Google Scholar]
  26. Liu X. F., Supek F., Nelson N., Culotta V. C. Negative control of heavy metal uptake by the Saccharomyces cerevisiae BSD2 gene. J Biol Chem. 1997 May 2;272(18):11763–11769. doi: 10.1074/jbc.272.18.11763. [DOI] [PubMed] [Google Scholar]
  27. McLeod M., Stein M., Beach D. The product of the mei3+ gene, expressed under control of the mating-type locus, induces meiosis and sporulation in fission yeast. EMBO J. 1987 Mar;6(3):729–736. doi: 10.1002/j.1460-2075.1987.tb04814.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Miki H., Miura K., Matuoka K., Nakata T., Hirokawa N., Orita S., Kaibuchi K., Takai Y., Takenawa T. Association of Ash/Grb-2 with dynamin through the Src homology 3 domain. J Biol Chem. 1994 Feb 25;269(8):5489–5492. [PubMed] [Google Scholar]
  29. Moreno S., Klar A., Nurse P. Molecular genetic analysis of fission yeast Schizosaccharomyces pombe. Methods Enzymol. 1991;194:795–823. doi: 10.1016/0076-6879(91)94059-l. [DOI] [PubMed] [Google Scholar]
  30. Obar R. A., Collins C. A., Hammarback J. A., Shpetner H. S., Vallee R. B. Molecular cloning of the microtubule-associated mechanochemical enzyme dynamin reveals homology with a new family of GTP-binding proteins. Nature. 1990 Sep 20;347(6290):256–261. doi: 10.1038/347256a0. [DOI] [PubMed] [Google Scholar]
  31. Okazaki K., Okazaki N., Kume K., Jinno S., Tanaka K., Okayama H. High-frequency transformation method and library transducing vectors for cloning mammalian cDNAs by trans-complementation of Schizosaccharomyces pombe. Nucleic Acids Res. 1990 Nov 25;18(22):6485–6489. doi: 10.1093/nar/18.22.6485. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Pinner E., Gruenheid S., Raymond M., Gros P. Functional complementation of the yeast divalent cation transporter family SMF by NRAMP2, a member of the mammalian natural resistance-associated macrophage protein family. J Biol Chem. 1997 Nov 14;272(46):28933–28938. doi: 10.1074/jbc.272.46.28933. [DOI] [PubMed] [Google Scholar]
  33. Ruetz S., Gros P. Phosphatidylcholine translocase: a physiological role for the mdr2 gene. Cell. 1994 Jul 1;77(7):1071–1081. doi: 10.1016/0092-8674(94)90446-4. [DOI] [PubMed] [Google Scholar]
  34. Scaife R., Gout I., Waterfield M. D., Margolis R. L. Growth factor-induced binding of dynamin to signal transduction proteins involves sorting to distinct and separate proline-rich dynamin sequences. EMBO J. 1994 Jun 1;13(11):2574–2582. doi: 10.1002/j.1460-2075.1994.tb06547.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Searle S., Bright N. A., Roach T. I., Atkinson P. G., Barton C. H., Meloen R. H., Blackwell J. M. Localisation of Nramp1 in macrophages: modulation with activation and infection. J Cell Sci. 1998 Oct;111(Pt 19):2855–2866. doi: 10.1242/jcs.111.19.2855. [DOI] [PubMed] [Google Scholar]
  36. Shpetner H. S., Vallee R. B. Dynamin is a GTPase stimulated to high levels of activity by microtubules. Nature. 1992 Feb 20;355(6362):733–735. doi: 10.1038/355733a0. [DOI] [PubMed] [Google Scholar]
  37. Shpetner H. S., Vallee R. B. Identification of dynamin, a novel mechanochemical enzyme that mediates interactions between microtubules. Cell. 1989 Nov 3;59(3):421–432. doi: 10.1016/0092-8674(89)90027-5. [DOI] [PubMed] [Google Scholar]
  38. Smit J. J., Schinkel A. H., Oude Elferink R. P., Groen A. K., Wagenaar E., van Deemter L., Mol C. A., Ottenhoff R., van der Lugt N. M., van Roon M. A. Homozygous disruption of the murine mdr2 P-glycoprotein gene leads to a complete absence of phospholipid from bile and to liver disease. Cell. 1993 Nov 5;75(3):451–462. doi: 10.1016/0092-8674(93)90380-9. [DOI] [PubMed] [Google Scholar]
  39. Supek F., Supekova L., Nelson H., Nelson N. A yeast manganese transporter related to the macrophage protein involved in conferring resistance to mycobacteria. Proc Natl Acad Sci U S A. 1996 May 14;93(10):5105–5110. doi: 10.1073/pnas.93.10.5105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Tabuchi M., Iwaihara O., Ohtani Y., Ohuchi N., Sakurai J., Morita T., Iwahara S., Takegawa K. Vacuolar protein sorting in fission yeast: cloning, biosynthesis, transport, and processing of carboxypeptidase Y from Schizosaccharomyces pombe. J Bacteriol. 1997 Jul;179(13):4179–4189. doi: 10.1128/jb.179.13.4179-4189.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Tanaka N., Ohuchi N., Mukai Y., Osaka Y., Ohtani Y., Tabuchi M., Bhuiyan M. S., Fukui H., Harashima S., Takegawa K. Isolation and characterization of an invertase and its repressor genes from Schizosaccharomyces pombe. Biochem Biophys Res Commun. 1998 Apr 7;245(1):246–253. doi: 10.1006/bbrc.1998.8406. [DOI] [PubMed] [Google Scholar]
  42. Tokuraku K., Nakagawa H., Kishi F., Kotani S. Human natural resistance-associated macrophage protein is a new type of microtubule-associated protein. FEBS Lett. 1998 May 22;428(1-2):63–67. doi: 10.1016/s0014-5793(98)00488-8. [DOI] [PubMed] [Google Scholar]
  43. Ueda K., Cardarelli C., Gottesman M. M., Pastan I. Expression of a full-length cDNA for the human "MDR1" gene confers resistance to colchicine, doxorubicin, and vinblastine. Proc Natl Acad Sci U S A. 1987 May;84(9):3004–3008. doi: 10.1073/pnas.84.9.3004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Vida T. A., Emr S. D. A new vital stain for visualizing vacuolar membrane dynamics and endocytosis in yeast. J Cell Biol. 1995 Mar;128(5):779–792. doi: 10.1083/jcb.128.5.779. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Vidal S. M., Malo D., Vogan K., Skamene E., Gros P. Natural resistance to infection with intracellular parasites: isolation of a candidate for Bcg. Cell. 1993 May 7;73(3):469–485. doi: 10.1016/0092-8674(93)90135-d. [DOI] [PubMed] [Google Scholar]
  46. Vidal S., Belouchi A. M., Cellier M., Beatty B., Gros P. Cloning and characterization of a second human NRAMP gene on chromosome 12q13. Mamm Genome. 1995 Apr;6(4):224–230. doi: 10.1007/BF00352405. [DOI] [PubMed] [Google Scholar]
  47. West A. H., Clark D. J., Martin J., Neupert W., Hartl F. U., Horwich A. L. Two related genes encoding extremely hydrophobic proteins suppress a lethal mutation in the yeast mitochondrial processing enhancing protein. J Biol Chem. 1992 Dec 5;267(34):24625–24633. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES