Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1999 Nov 15;344(Pt 1):221–229.

Transport activity of AE3 chloride/bicarbonate anion-exchange proteins and their regulation by intracellular pH.

D Sterling 1, J R Casey 1
PMCID: PMC1220634  PMID: 10548554

Abstract

Plasma membrane Cl(-)/HCO(3)(-) anion-exchange (AE) proteins contribute to regulation of intracellular pH (pH(i)). We characterized the transport activity and regulation by pH(i) of full-length AE3 and the cardiac isoform, AE3c, both of which are expressed in the heart. AE3c is an N-terminal variant of AE3. We also characterized AE1, AE2 and a deletion construct (AE3tr) coding for the common region of AE3 and AE3c. AE proteins were expressed by transient transfection of HEK-293 cells, and transport activity was monitored by following changes of intracellular pH or intracellular chloride concentration associated with anion exchange. Transport activities, measured as proton flux (mM H(+).min(-1)), were as follows: AE1, 24; AE2, 32; full-length AE3, 9; AE3c, 4 and AE3tr, 4. The wide range of transport activities is not explained by variation of cell surface processing since approx. 30% of each isoform was expressed on the cell surface. pH(i) was clamped at a range of values from 6.0-9.0 to examine regulation of AE proteins by pH(i). Whereas AE2 was steeply inhibited by acid pH(i), AE1, AE3 and AE3c were essentially insensitive to changes of pH(i). We conclude that AE3 and AE3c can contribute to pH(i) recovery after cellular-acid loading.

Full Text

The Full Text of this article is available as a PDF (179.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alper S. L., Kopito R. R., Libresco S. M., Lodish H. F. Cloning and characterization of a murine band 3-related cDNA from kidney and from a lymphoid cell line. J Biol Chem. 1988 Nov 15;263(32):17092–17099. [PubMed] [Google Scholar]
  2. Baggio B., Bordin L., Clari G., Gambaro G., Moret V. Functional correlation between the Ser/Thr-phosphorylation of band-3 and band-3-mediated transmembrane anion transport in human erythrocytes. Biochim Biophys Acta. 1993 May 14;1148(1):157–160. doi: 10.1016/0005-2736(93)90173-w. [DOI] [PubMed] [Google Scholar]
  3. Busa W. B., Nuccitelli R. Metabolic regulation via intracellular pH. Am J Physiol. 1984 Apr;246(4 Pt 2):R409–R438. doi: 10.1152/ajpregu.1984.246.4.R409. [DOI] [PubMed] [Google Scholar]
  4. Cabantchik Z. I., Rothstein A. Membrane proteins related to anion permeability of human red blood cells. I. Localization of disulfonic stilbene binding sites in proteins involved in permeation. J Membr Biol. 1974;15(3):207–226. doi: 10.1007/BF01870088. [DOI] [PubMed] [Google Scholar]
  5. Casey J. R., Ding Y., Kopito R. R. The role of cysteine residues in the erythrocyte plasma membrane anion exchange protein, AE1. J Biol Chem. 1995 Apr 14;270(15):8521–8527. doi: 10.1074/jbc.270.15.8521. [DOI] [PubMed] [Google Scholar]
  6. DeVries S. H., Schwartz E. A. Modulation of an electrical synapse between solitary pairs of catfish horizontal cells by dopamine and second messengers. J Physiol. 1989 Jul;414:351–375. doi: 10.1113/jphysiol.1989.sp017692. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Désilets M., Pucéat M., Vassort G. Chloride dependence of pH modulation by beta-adrenergic agonist in rat cardiomyocytes. Circ Res. 1994 Nov;75(5):862–869. doi: 10.1161/01.res.75.5.862. [DOI] [PubMed] [Google Scholar]
  8. Ek-Vitorín J. F., Calero G., Morley G. E., Coombs W., Taffet S. M., Delmar M. PH regulation of connexin43: molecular analysis of the gating particle. Biophys J. 1996 Sep;71(3):1273–1284. doi: 10.1016/S0006-3495(96)79328-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Garcia C. K., Brown M. S., Pathak R. K., Goldstein J. L. cDNA cloning of MCT2, a second monocarboxylate transporter expressed in different cells than MCT1. J Biol Chem. 1995 Jan 27;270(4):1843–1849. doi: 10.1074/jbc.270.4.1843. [DOI] [PubMed] [Google Scholar]
  10. Graham F. L., Smiley J., Russell W. C., Nairn R. Characteristics of a human cell line transformed by DNA from human adenovirus type 5. J Gen Virol. 1977 Jul;36(1):59–74. doi: 10.1099/0022-1317-36-1-59. [DOI] [PubMed] [Google Scholar]
  11. Hermans M. M., Kortekaas P., Jongsma H. J., Rook M. B. pH sensitivity of the cardiac gap junction proteins, connexin 45 and 43. Pflugers Arch. 1995 Nov;431(1):138–140. doi: 10.1007/BF00374389. [DOI] [PubMed] [Google Scholar]
  12. Humphreys B. D., Jiang L., Chernova M. N., Alper S. L. Functional characterization and regulation by pH of murine AE2 anion exchanger expressed in Xenopus oocytes. Am J Physiol. 1994 Nov;267(5 Pt 1):C1295–C1307. doi: 10.1152/ajpcell.1994.267.5.C1295. [DOI] [PubMed] [Google Scholar]
  13. Illsley N. P., Verkman A. S. Membrane chloride transport measured using a chloride-sensitive fluorescent probe. Biochemistry. 1987 Mar 10;26(5):1215–1219. doi: 10.1021/bi00379a002. [DOI] [PubMed] [Google Scholar]
  14. Isfort R. J., Cody D. B., Asquith T. N., Ridder G. M., Stuard S. B., LeBoeuf R. A. Induction of protein phosphorylation, protein synthesis, immediate-early-gene expression and cellular proliferation by intracellular pH modulation. Implications for the role of hydrogen ions in signal transduction. Eur J Biochem. 1993 Apr 1;213(1):349–357. doi: 10.1111/j.1432-1033.1993.tb17768.x. [DOI] [PubMed] [Google Scholar]
  15. Jiang L., Stuart-Tilley A., Parkash J., Alper S. L. pHi and serum regulate AE2-mediated Cl-/HCO3- exchange in CHOP cells of defined transient transfection status. Am J Physiol. 1994 Sep;267(3 Pt 1):C845–C856. doi: 10.1152/ajpcell.1994.267.3.C845. [DOI] [PubMed] [Google Scholar]
  16. Kobayashi S., Morgans C. W., Casey J. R., Kopito R. R. AE3 anion exchanger isoforms in the vertebrate retina: developmental regulation and differential expression in neurons and glia. J Neurosci. 1994 Oct;14(10):6266–6279. doi: 10.1523/JNEUROSCI.14-10-06266.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kopito R. R., Lee B. S., Simmons D. M., Lindsey A. E., Morgans C. W., Schneider K. Regulation of intracellular pH by a neuronal homolog of the erythrocyte anion exchanger. Cell. 1989 Dec 1;59(5):927–937. doi: 10.1016/0092-8674(89)90615-6. [DOI] [PubMed] [Google Scholar]
  18. Kudrycki K. E., Newman P. R., Shull G. E. cDNA cloning and tissue distribution of mRNAs for two proteins that are related to the band 3 Cl-/HCO3- exchanger. J Biol Chem. 1990 Jan 5;265(1):462–471. [PubMed] [Google Scholar]
  19. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  20. Lee B. S., Gunn R. B., Kopito R. R. Functional differences among nonerythroid anion exchangers expressed in a transfected human cell line. J Biol Chem. 1991 Jun 25;266(18):11448–11454. [PubMed] [Google Scholar]
  21. Lindsey A. E., Schneider K., Simmons D. M., Baron R., Lee B. S., Kopito R. R. Functional expression and subcellular localization of an anion exchanger cloned from choroid plexus. Proc Natl Acad Sci U S A. 1990 Jul;87(14):5278–5282. doi: 10.1073/pnas.87.14.5278. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Linn S. C., Askew G. R., Menon A. G., Shull G. E. Conservation of an AE3 Cl-/HCO3- exchanger cardiac-specific exon and promoter region and AE3 mRNA expression patterns in murine and human hearts. Circ Res. 1995 Apr;76(4):584–591. doi: 10.1161/01.res.76.4.584. [DOI] [PubMed] [Google Scholar]
  23. Linn S. C., Kudrycki K. E., Shull G. E. The predicted translation product of a cardiac AE3 mRNA contains an N terminus distinct from that of the brain AE3 Cl-/HCO3- exchanger. Cloning of a cardiac AE3 cDNA, organization of the AE3 gene, and identification of an alternative transcription initiation site. J Biol Chem. 1992 Apr 15;267(11):7927–7935. [PubMed] [Google Scholar]
  24. Low P. S. Structure and function of the cytoplasmic domain of band 3: center of erythrocyte membrane-peripheral protein interactions. Biochim Biophys Acta. 1986 Sep 22;864(2):145–167. doi: 10.1016/0304-4157(86)90009-2. [DOI] [PubMed] [Google Scholar]
  25. Maren T. H. Carbonic anhydrase: chemistry, physiology, and inhibition. Physiol Rev. 1967 Oct;47(4):595–781. doi: 10.1152/physrev.1967.47.4.595. [DOI] [PubMed] [Google Scholar]
  26. Olsnes S., Tønnessen T. I., Sandvig K. pH-regulated anion antiport in nucleated mammalian cells. J Cell Biol. 1986 Mar;102(3):967–971. doi: 10.1083/jcb.102.3.967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Orchard C. H., Kentish J. C. Effects of changes of pH on the contractile function of cardiac muscle. Am J Physiol. 1990 Jun;258(6 Pt 1):C967–C981. doi: 10.1152/ajpcell.1990.258.6.C967. [DOI] [PubMed] [Google Scholar]
  28. Passow H. Molecular aspects of band 3 protein-mediated anion transport across the red blood cell membrane. Rev Physiol Biochem Pharmacol. 1986;103:61–203. doi: 10.1007/3540153330_2. [DOI] [PubMed] [Google Scholar]
  29. Pawson T., Gish G. D. SH2 and SH3 domains: from structure to function. Cell. 1992 Oct 30;71(3):359–362. doi: 10.1016/0092-8674(92)90504-6. [DOI] [PubMed] [Google Scholar]
  30. Pawson T. SH2 and SH3 domains in signal transduction. Adv Cancer Res. 1994;64:87–110. doi: 10.1016/s0065-230x(08)60835-0. [DOI] [PubMed] [Google Scholar]
  31. Pucéat M., Clément O., Vassort G. Extracellular MgATP activates the Cl-/HCO3- exchanger in single rat cardiac cells. J Physiol. 1991 Dec;444:241–256. doi: 10.1113/jphysiol.1991.sp018875. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Pucéat M., Korichneva I., Cassoly R., Vassort G. Identification of band 3-like proteins and Cl-/HCO3- exchange in isolated cardiomyocytes. J Biol Chem. 1995 Jan 20;270(3):1315–1322. doi: 10.1074/jbc.270.3.1315. [DOI] [PubMed] [Google Scholar]
  33. Pucéat M., Roche S., Vassort G. Src family tyrosine kinase regulates intracellular pH in cardiomyocytes. J Cell Biol. 1998 Jun 29;141(7):1637–1646. doi: 10.1083/jcb.141.7.1637. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Reynolds J. E., Li J., Eastman A. Detection of apoptosis by flow cytometry of cells simultaneously stained for intracellular pH (carboxy SNARF-1) and membrane permeability (Hoechst 33342). Cytometry. 1996 Dec 1;25(4):349–357. doi: 10.1002/(SICI)1097-0320(19961201)25:4<349::AID-CYTO6>3.0.CO;2-8. [DOI] [PubMed] [Google Scholar]
  35. Romero M. F., Hediger M. A., Boulpaep E. L., Boron W. F. Expression cloning and characterization of a renal electrogenic Na+/HCO3- cotransporter. Nature. 1997 May 22;387(6631):409–413. doi: 10.1038/387409a0. [DOI] [PubMed] [Google Scholar]
  36. Roos A., Boron W. F. Intracellular pH. Physiol Rev. 1981 Apr;61(2):296–434. doi: 10.1152/physrev.1981.61.2.296. [DOI] [PubMed] [Google Scholar]
  37. Ruetz S., Lindsey A. E., Ward C. L., Kopito R. R. Functional activation of plasma membrane anion exchangers occurs in a pre-Golgi compartment. J Cell Biol. 1993 Apr;121(1):37–48. doi: 10.1083/jcb.121.1.37. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Sardet C., Franchi A., Pouysségur J. Molecular cloning, primary structure, and expression of the human growth factor-activatable Na+/H+ antiporter. Cell. 1989 Jan 27;56(2):271–280. doi: 10.1016/0092-8674(89)90901-x. [DOI] [PubMed] [Google Scholar]
  39. Sarkar G., Sommer S. S. The "megaprimer" method of site-directed mutagenesis. Biotechniques. 1990 Apr;8(4):404–407. [PubMed] [Google Scholar]
  40. Silva N. L., Wang H., Harris C. V., Singh D., Fliegel L. Characterization of the Na+/H+ exchanger in human choriocarcinoma (BeWo) cells. Pflugers Arch. 1997 Apr;433(6):792–802. doi: 10.1007/s004240050347. [DOI] [PubMed] [Google Scholar]
  41. Tang X. B., Fujinaga J., Kopito R., Casey J. R. Topology of the region surrounding Glu681 of human AE1 protein, the erythrocyte anion exchanger. J Biol Chem. 1998 Aug 28;273(35):22545–22553. doi: 10.1074/jbc.273.35.22545. [DOI] [PubMed] [Google Scholar]
  42. Thomas J. A., Buchsbaum R. N., Zimniak A., Racker E. Intracellular pH measurements in Ehrlich ascites tumor cells utilizing spectroscopic probes generated in situ. Biochemistry. 1979 May 29;18(11):2210–2218. doi: 10.1021/bi00578a012. [DOI] [PubMed] [Google Scholar]
  43. Vandenberg J. I., Carter N. D., Bethell H. W., Nogradi A., Ridderstråle Y., Metcalfe J. C., Grace A. A. Carbonic anhydrase and cardiac pH regulation. Am J Physiol. 1996 Dec;271(6 Pt 1):C1838–C1846. doi: 10.1152/ajpcell.1996.271.6.C1838. [DOI] [PubMed] [Google Scholar]
  44. Waheed A., Zhu X. L., Sly W. S. Membrane-associated carbonic anhydrase from rat lung. Purification, characterization, tissue distribution, and comparison with carbonic anhydrase IVs of other mammals. J Biol Chem. 1992 Feb 15;267(5):3308–3311. [PubMed] [Google Scholar]
  45. Yannoukakos D., Stuart-Tilley A., Fernandez H. A., Fey P., Duyk G., Alper S. L. Molecular cloning, expression, and chromosomal localization of two isoforms of the AE3 anion exchanger from human heart. Circ Res. 1994 Oct;75(4):603–614. doi: 10.1161/01.res.75.4.603. [DOI] [PubMed] [Google Scholar]
  46. Zhang Y., Chernova M. N., Stuart-Tilley A. K., Jiang L., Alper S. L. The cytoplasmic and transmembrane domains of AE2 both contribute to regulation of anion exchange by pH. J Biol Chem. 1996 Mar 8;271(10):5741–5749. doi: 10.1074/jbc.271.10.5741. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES