Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1999 Nov 15;344(Pt 1):231–235.

Regulation of glycogen synthesis in rat skeletal muscle after glycogen-depleting contractile activity: effects of adrenaline on glycogen synthesis and activation of glycogen synthase and glycogen phosphorylase.

J Franch 1, R Aslesen 1, J Jensen 1
PMCID: PMC1220635  PMID: 10548555

Abstract

We investigated the effects of insulin and adrenaline on the rate of glycogen synthesis in skeletal muscles after electrical stimulation in vitro. The contractile activity decreased the glycogen concentration by 62%. After contractile activity, the glycogen stores were fully replenished at a constant and high rate for 3 h when 10 m-i.u./ml insulin was present. In the absence of insulin, only 65% of the initial glycogen stores was replenished. Adrenaline decreased insulin-stimulated glycogen synthesis. Surprisingly, adrenaline did not inhibit glycogen synthesis stimulated by glycogen-depleting contractile activity. In agreement with this, the fractional activity of glycogen synthase was high when adrenaline was present after exercise, whereas adrenaline decreased the fractional activity of glycogen synthase to a low level during stimulation with insulin. Furthermore, adrenaline activated glycogen phosphorylase almost completely during stimulation with insulin, whereas a much lower activation of glycogen phosphorylase was observed after contractile activity. Thus adrenaline does not inhibit contraction-stimulated glycogen synthesis.

Full Text

The Full Text of this article is available as a PDF (108.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aslesen R., Jensen J. Effects of epinephrine on glucose metabolism in contracting rat skeletal muscles. Am J Physiol. 1998 Sep;275(3 Pt 1):E448–E456. doi: 10.1152/ajpendo.1998.275.3.E448. [DOI] [PubMed] [Google Scholar]
  2. Bloch G., Chase J. R., Meyer D. B., Avison M. J., Shulman G. I., Shulman R. G. In vivo regulation of rat muscle glycogen resynthesis after intense exercise. Am J Physiol. 1994 Jan;266(1 Pt 1):E85–E91. doi: 10.1152/ajpendo.1994.266.1.E85. [DOI] [PubMed] [Google Scholar]
  3. Bräu L., Ferreira L. D., Nikolovski S., Raja G., Palmer T. N., Fournier P. A. Regulation of glycogen synthase and phosphorylase during recovery from high-intensity exercise in the rat. Biochem J. 1997 Feb 15;322(Pt 1):303–308. doi: 10.1042/bj3220303. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Challiss R. A., Lozeman F. J., Leighton B., Newsholme E. A. Effects of the beta-adrenoceptor agonist isoprenaline on insulin-sensitivity in soleus muscle of the rat. Biochem J. 1986 Jan 15;233(2):377–381. doi: 10.1042/bj2330377. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cohen P. Dissection of the protein phosphorylation cascades involved in insulin and growth factor action. Biochem Soc Trans. 1993 Aug;21(3):555–567. doi: 10.1042/bst0210555. [DOI] [PubMed] [Google Scholar]
  6. Constable S. H., Favier R. J., Holloszy J. O. Exercise and glycogen depletion: effects on ability to activate muscle phosphorylase. J Appl Physiol (1985) 1986 May;60(5):1518–1523. doi: 10.1152/jappl.1986.60.5.1518. [DOI] [PubMed] [Google Scholar]
  7. Cuendet G. S., Loten E. G., Jeanrenaud B., Renold A. E. Decreased basal, noninsulin-stimulated glucose uptake and metabolism by skeletal soleus muscle isolated from obese-hyperglycemic (ob/ob) mice. J Clin Invest. 1976 Nov;58(5):1078–1088. doi: 10.1172/JCI108559. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. DANFORTH W. H. GLYCOGEN SYNTHETASE ACTIVITY IN SKELETAL MUSCLE. INTERCONVERSION OF TWO FORMS AND CONTROL OF GLYCOGEN SYNTHESIS. J Biol Chem. 1965 Feb;240:588–593. [PubMed] [Google Scholar]
  9. Davis T. A., Klahr S., Tegtmeyer E. D., Osborne D. F., Howard T. L., Karl I. E. Glucose metabolism in epitrochlearis muscle of acutely exercised and trained rats. Am J Physiol. 1986 Feb;250(2 Pt 1):E137–E143. doi: 10.1152/ajpendo.1986.250.2.E137. [DOI] [PubMed] [Google Scholar]
  10. Dimitriadis G. D., Richards S. J., Parry-Billings M., Leighton B., Newsholme E. A., Challiss R. A. Beta-adrenoceptor-agonist and insulin actions on glucose metabolism in rat skeletal muscle in different thyroid states. Biochem J. 1991 Sep 1;278(Pt 2):587–593. doi: 10.1042/bj2780587. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Etgen G. J., Jr, Jensen J., Wilson C. M., Hunt D. G., Cushman S. W., Ivy J. L. Exercise training reverses insulin resistance in muscle by enhanced recruitment of GLUT-4 to the cell surface. Am J Physiol. 1997 May;272(5 Pt 1):E864–E869. doi: 10.1152/ajpendo.1997.272.5.E864. [DOI] [PubMed] [Google Scholar]
  12. Etgen G. J., Jr, Wilson C. M., Jensen J., Cushman S. W., Ivy J. L. Glucose transport and cell surface GLUT-4 protein in skeletal muscle of the obese Zucker rat. Am J Physiol. 1996 Aug;271(2 Pt 1):E294–E301. doi: 10.1152/ajpendo.1996.271.2.E294. [DOI] [PubMed] [Google Scholar]
  13. Flotow H., Roach P. J. Synergistic phosphorylation of rabbit muscle glycogen synthase by cyclic AMP-dependent protein kinase and casein kinase I. Implications for hormonal regulation of glycogen synthase. J Biol Chem. 1989 Jun 5;264(16):9126–9128. [PubMed] [Google Scholar]
  14. Garetto L. P., Richter E. A., Goodman M. N., Ruderman N. B. Enhanced muscle glucose metabolism after exercise in the rat: the two phases. Am J Physiol. 1984 Jun;246(6 Pt 1):E471–E475. doi: 10.1152/ajpendo.1984.246.6.E471. [DOI] [PubMed] [Google Scholar]
  15. Gilboe D. P., Larson K. L., Nuttall F. Q. Radioactive method for the assay of glycogen phosphorylases. Anal Biochem. 1972 May;47(1):20–27. doi: 10.1016/0003-2697(72)90274-6. [DOI] [PubMed] [Google Scholar]
  16. Hespel P., Richter E. A. Glucose uptake and transport in contracting, perfused rat muscle with different pre-contraction glycogen concentrations. J Physiol. 1990 Aug;427:347–359. doi: 10.1113/jphysiol.1990.sp018175. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Holness M. J., Sugden M. C. Glucose disposal by skeletal muscle in response to re-feeding after progressive starvation. Biochem J. 1991 Jul 15;277(Pt 2):429–433. doi: 10.1042/bj2770429. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Høstmark A. T., Grønnerød O., Horn R. S. Muscle contractions inhibit adrenergic effects on glycogen enzymes. Horm Metab Res. 1978 Jan;10(1):81–82. doi: 10.1055/s-0028-1096916. [DOI] [PubMed] [Google Scholar]
  19. Ivy J. L., Holloszy J. O. Persistent increase in glucose uptake by rat skeletal muscle following exercise. Am J Physiol. 1981 Nov;241(5):C200–C203. doi: 10.1152/ajpcell.1981.241.5.C200. [DOI] [PubMed] [Google Scholar]
  20. Ivy J. L., Kuo C. H. Regulation of GLUT4 protein and glycogen synthase during muscle glycogen synthesis after exercise. Acta Physiol Scand. 1998 Mar;162(3):295–304. doi: 10.1046/j.1365-201X.1998.0302e.x. [DOI] [PubMed] [Google Scholar]
  21. Ivy J. L. Muscle glycogen synthesis before and after exercise. Sports Med. 1991 Jan;11(1):6–19. doi: 10.2165/00007256-199111010-00002. [DOI] [PubMed] [Google Scholar]
  22. James D. E., Burleigh K. M., Kraegen E. W. In vivo glucose metabolism in individual tissues of the rat. Interaction between epinephrine and insulin. J Biol Chem. 1986 May 15;261(14):6366–6374. [PubMed] [Google Scholar]
  23. Jensen J., Aslesen R., Ivy J. L., Brørs O. Role of glycogen concentration and epinephrine on glucose uptake in rat epitrochlearis muscle. Am J Physiol. 1997 Apr;272(4 Pt 1):E649–E655. doi: 10.1152/ajpendo.1997.272.4.E649. [DOI] [PubMed] [Google Scholar]
  24. Jensen J., Dahl H. A. Adrenaline stimulated glycogen breakdown in rat epitrochlearis muscles: fibre type specificity and relation to phosphorylase transformation. Biochem Mol Biol Int. 1995 Jan;35(1):145–154. [PubMed] [Google Scholar]
  25. Lawrence J. C., Jr, Roach P. J. New insights into the role and mechanism of glycogen synthase activation by insulin. Diabetes. 1997 Apr;46(4):541–547. doi: 10.2337/diab.46.4.541. [DOI] [PubMed] [Google Scholar]
  26. Lee A. D., Hansen P. A., Schluter J., Gulve E. A., Gao J., Holloszy J. O. Effects of epinephrine on insulin-stimulated glucose uptake and GLUT-4 phosphorylation in muscle. Am J Physiol. 1997 Sep;273(3 Pt 1):C1082–C1087. doi: 10.1152/ajpcell.1997.273.3.C1082. [DOI] [PubMed] [Google Scholar]
  27. Leighton B., Blomstrand E., Challiss R. A., Lozeman F. J., Parry-Billings M., Dimitriadis G. D., Newsholme E. A. Acute and chronic effects of strenuous exercise on glucose metabolism in isolated, incubated soleus muscle of exercise-trained rats. Acta Physiol Scand. 1989 Jun;136(2):177–184. doi: 10.1111/j.1748-1716.1989.tb08650.x. [DOI] [PubMed] [Google Scholar]
  28. Lund S., Holman G. D., Schmitz O., Pedersen O. Contraction stimulates translocation of glucose transporter GLUT4 in skeletal muscle through a mechanism distinct from that of insulin. Proc Natl Acad Sci U S A. 1995 Jun 20;92(13):5817–5821. doi: 10.1073/pnas.92.13.5817. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Maehlum S., Høstmark A. T., Hermansen L. Synthesis of muscle glycogen during recovery after prolonged severe exercise in diabetic and non-diabetic subjects. Scand J Clin Lab Invest. 1977 Jun;37(4):309–316. doi: 10.3109/00365517709092634. [DOI] [PubMed] [Google Scholar]
  30. Maehlum S., Høstmark A. T., Hermansen L. Synthesis of muscle glycogen during recovery after prolonged severe exercise in diabetic subjects. Effect of insulin deprivation. Scand J Clin Lab Invest. 1978 Feb;38(1):35–39. doi: 10.3109/00365517809108400. [DOI] [PubMed] [Google Scholar]
  31. Nakielny S., Campbell D. G., Cohen P. The molecular mechanism by which adrenalin inhibits glycogen synthesis. Eur J Biochem. 1991 Aug 1;199(3):713–722. doi: 10.1111/j.1432-1033.1991.tb16175.x. [DOI] [PubMed] [Google Scholar]
  32. Nesher R., Karl I. E., Kipnis D. M. Dissociation of effects of insulin and contraction on glucose transport in rat epitrochlearis muscle. Am J Physiol. 1985 Sep;249(3 Pt 1):C226–C232. doi: 10.1152/ajpcell.1985.249.3.C226. [DOI] [PubMed] [Google Scholar]
  33. Piras R., Staneloni R. In vivo regulation of rat muscle glycogen synthetase activity. Biochemistry. 1969 May;8(5):2153–2160. doi: 10.1021/bi00833a056. [DOI] [PubMed] [Google Scholar]
  34. Price T. B., Perseghin G., Duleba A., Chen W., Chase J., Rothman D. L., Shulman R. G., Shulman G. I. NMR studies of muscle glycogen synthesis in insulin-resistant offspring of parents with non-insulin-dependent diabetes mellitus immediately after glycogen-depleting exercise. Proc Natl Acad Sci U S A. 1996 May 28;93(11):5329–5334. doi: 10.1073/pnas.93.11.5329. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Price T. B., Rothman D. L., Taylor R., Avison M. J., Shulman G. I., Shulman R. G. Human muscle glycogen resynthesis after exercise: insulin-dependent and -independent phases. J Appl Physiol (1985) 1994 Jan;76(1):104–111. doi: 10.1152/jappl.1994.76.1.104. [DOI] [PubMed] [Google Scholar]
  36. Rennie M. J., Fell R. D., Ivy J. L., Holloszy J. O. Adrenaline reactivation of muscle phosphorylase after deactivation during phasic contractile activity. Biosci Rep. 1982 May;2(5):323–331. doi: 10.1007/BF01115118. [DOI] [PubMed] [Google Scholar]
  37. Richter E. A., Garetto L. P., Goodman M. N., Ruderman N. B. Enhanced muscle glucose metabolism after exercise: modulation by local factors. Am J Physiol. 1984 Jun;246(6 Pt 1):E476–E482. doi: 10.1152/ajpendo.1984.246.6.E476. [DOI] [PubMed] [Google Scholar]
  38. Richter E. A., Ruderman N. B., Gavras H., Belur E. R., Galbo H. Muscle glycogenolysis during exercise: dual control by epinephrine and contractions. Am J Physiol. 1982 Jan;242(1):E25–E32. doi: 10.1152/ajpendo.1982.242.1.E25. [DOI] [PubMed] [Google Scholar]
  39. Roach P. J. Control of glycogen synthase by hierarchal protein phosphorylation. FASEB J. 1990 Sep;4(12):2961–2968. [PubMed] [Google Scholar]
  40. Shikama H., Chiasson J. L., Exton J. H. Studies on the interactions between insulin and epinephrine in the control of skeletal muscle glycogen metabolism. J Biol Chem. 1981 May 10;256(9):4450–4454. [PubMed] [Google Scholar]
  41. Shulman G. I., Rothman D. L., Jue T., Stein P., DeFronzo R. A., Shulman R. G. Quantitation of muscle glycogen synthesis in normal subjects and subjects with non-insulin-dependent diabetes by 13C nuclear magnetic resonance spectroscopy. N Engl J Med. 1990 Jan 25;322(4):223–228. doi: 10.1056/NEJM199001253220403. [DOI] [PubMed] [Google Scholar]
  42. Taylor R., Price T. B., Katz L. D., Shulman R. G., Shulman G. I. Direct measurement of change in muscle glycogen concentration after a mixed meal in normal subjects. Am J Physiol. 1993 Aug;265(2 Pt 1):E224–E229. doi: 10.1152/ajpendo.1993.265.2.E224. [DOI] [PubMed] [Google Scholar]
  43. Thomas J. A., Schlender K. K., Larner J. A rapid filter paper assay for UDPglucose-glycogen glucosyltransferase, including an improved biosynthesis of UDP-14C-glucose. Anal Biochem. 1968 Oct 24;25(1):486–499. doi: 10.1016/0003-2697(68)90127-9. [DOI] [PubMed] [Google Scholar]
  44. Yeh J. I., Gulve E. A., Rameh L., Birnbaum M. J. The effects of wortmannin on rat skeletal muscle. Dissociation of signaling pathways for insulin- and contraction-activated hexose transport. J Biol Chem. 1995 Feb 3;270(5):2107–2111. doi: 10.1074/jbc.270.5.2107. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES