Abstract
Aspergillus niger strain LCP521 harbours a highly processive epoxide hydrolase (EH) that is of particular interest for the enantioselective bio-organic synthesis of fine chemicals. In the present work, we report the isolation of the gene and cDNA for this EH by use of inverse PCR. The gene is composed of nine exons, the first of which is apparently non-coding. The deduced protein of the A. niger EH shares significant sequence similarity with the mammalian microsomal EHs (mEH). In contrast to these, however, the protein from A. niger lacks the common N-terminal membrane anchor, in line with the fact that this enzyme is, indeed, soluble in its native environment. Recombinant expression of the isolated cDNA in Escherichia coli yielded a fully active EH with similar characteristics to the fungal enzyme. Sequence comparison with mammalian EHs suggested that Asp(192), Asp(348) and His(374) constituted the catalytic triad of the fungal EH. This was subsequently substantiated by the analysis of respective mutants constructed by site-directed mutagenesis. The presence of an aspartic acid residue in the charge-relay system of the A. niger enzyme, in contrast to a glutamic acid residue in the respective position of all mEHs analysed to date, may be one important contributor to the exceptionally high turnover number of the fungal enzyme when compared with its mammalian relatives. Recombinant expression of the enzyme in E. coli offers a versatile tool for the bio-organic chemist for the chiral synthesis of a variety of fine chemicals.
Full Text
The Full Text of this article is available as a PDF (281.3 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Arand M., Grant D. F., Beetham J. K., Friedberg T., Oesch F., Hammock B. D. Sequence similarity of mammalian epoxide hydrolases to the bacterial haloalkane dehalogenase and other related proteins. Implication for the potential catalytic mechanism of enzymatic epoxide hydrolysis. FEBS Lett. 1994 Feb 7;338(3):251–256. doi: 10.1016/0014-5793(94)80278-5. [DOI] [PubMed] [Google Scholar]
- Arand M., Müller F., Mecky A., Hinz W., Urban P., Pompon D., Kellner R., Oesch F. Catalytic triad of microsomal epoxide hydrolase: replacement of Glu404 with Asp leads to a strongly increased turnover rate. Biochem J. 1999 Jan 1;337(Pt 1):37–43. [PMC free article] [PubMed] [Google Scholar]
- Arand M., Wagner H., Oesch F. Asp333, Asp495, and His523 form the catalytic triad of rat soluble epoxide hydrolase. J Biol Chem. 1996 Feb 23;271(8):4223–4229. doi: 10.1074/jbc.271.8.4223. [DOI] [PubMed] [Google Scholar]
- Archelas A., Furstoss R. Epoxide hydrolases: new tools for the synthesis of fine organic chemicals. Trends Biotechnol. 1998 Mar;16(3):108–116. doi: 10.1016/S0167-7799(97)01161-X. [DOI] [PubMed] [Google Scholar]
- Archelas A., Furstoss R. Synthesis of enantiopure epoxides through biocatalytic approaches. Annu Rev Microbiol. 1997;51:491–525. doi: 10.1146/annurev.micro.51.1.491. [DOI] [PubMed] [Google Scholar]
- Armstrong R. N. Kinetic and chemical mechanism of epoxide hydrolase. Drug Metab Rev. 1999 Feb;31(1):71–86. doi: 10.1081/dmr-100101908. [DOI] [PubMed] [Google Scholar]
- Barbirato F., Verdoes J. C., de Bont J. A., van der Werf M. J. The Rhodococcus erythropolis DCL14 limonene-1,2-epoxide hydrolase gene encodes an enzyme belonging to a novel class of epoxide hydrolases. FEBS Lett. 1998 Nov 6;438(3):293–296. doi: 10.1016/s0014-5793(98)01322-2. [DOI] [PubMed] [Google Scholar]
- Beetham J. K., Grant D., Arand M., Garbarino J., Kiyosue T., Pinot F., Oesch F., Belknap W. R., Shinozaki K., Hammock B. D. Gene evolution of epoxide hydrolases and recommended nomenclature. DNA Cell Biol. 1995 Jan;14(1):61–71. doi: 10.1089/dna.1995.14.61. [DOI] [PubMed] [Google Scholar]
- Bentley P., Oesch F., Glatt H. Dual role of epoxide hydratase in both activation and inactivation of benzo(a)pyrene. Arch Toxicol. 1977 Dec 30;39(1-2):65–75. doi: 10.1007/BF00343276. [DOI] [PubMed] [Google Scholar]
- Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
- Falany C. N., McQuiddy P., Kasper C. B. Structure and organization of the microsomal xenobiotic epoxide hydrolase gene. J Biol Chem. 1987 Apr 25;262(12):5924–5930. [PubMed] [Google Scholar]
- Franken S. M., Rozeboom H. J., Kalk K. H., Dijkstra B. W. Crystal structure of haloalkane dehalogenase: an enzyme to detoxify halogenated alkanes. EMBO J. 1991 Jun;10(6):1297–1302. doi: 10.1002/j.1460-2075.1991.tb07647.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Friedberg T., Kissel W., Arand M., Oesch F. Production of site-specific P450 antibodies using recombinant fusion proteins as antigens. Methods Enzymol. 1991;206:193–201. doi: 10.1016/0076-6879(91)06090-p. [DOI] [PubMed] [Google Scholar]
- Friedberg T., Löllmann B., Becker R., Holler R., Oesch F. The microsomal epoxide hydrolase has a single membrane signal anchor sequence which is dispensable for the catalytic activity of this protein. Biochem J. 1994 Nov 1;303(Pt 3):967–972. doi: 10.1042/bj3030967. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hammock B. D., Pinot F., Beetham J. K., Grant D. F., Arand M. E., Oesch F. Isolation of a putative hydroxyacyl enzyme intermediate of an epoxide hydrolase. Biochem Biophys Res Commun. 1994 Feb 15;198(3):850–856. doi: 10.1006/bbrc.1994.1121. [DOI] [PubMed] [Google Scholar]
- Hassett C., Robinson K. B., Beck N. B., Omiecinski C. J. The human microsomal epoxide hydrolase gene (EPHX1): complete nucleotide sequence and structural characterization. Genomics. 1994 Sep 15;23(2):433–442. doi: 10.1006/geno.1994.1520. [DOI] [PubMed] [Google Scholar]
- Higgins D. G., Sharp P. M. Fast and sensitive multiple sequence alignments on a microcomputer. Comput Appl Biosci. 1989 Apr;5(2):151–153. doi: 10.1093/bioinformatics/5.2.151. [DOI] [PubMed] [Google Scholar]
- Honscha W., Oesch F., Friedberg T. Tissue-specific expression and differential inducibility of several microsomal epoxide hydrolase mRNAs which are formed by alternative splicing. Arch Biochem Biophys. 1991 Jun;287(2):380–385. doi: 10.1016/0003-9861(91)90493-3. [DOI] [PubMed] [Google Scholar]
- Janssen D. B., Pries F., van der Ploeg J., Kazemier B., Terpstra P., Witholt B. Cloning of 1,2-dichloroethane degradation genes of Xanthobacter autotrophicus GJ10 and expression and sequencing of the dhlA gene. J Bacteriol. 1989 Dec;171(12):6791–6799. doi: 10.1128/jb.171.12.6791-6799.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Johnson W. W., Yamazaki H., Shimada T., Ueng Y. F., Guengerich F. P. Aflatoxin B1 8,9-epoxide hydrolysis in the presence of rat and human epoxide hydrolase. Chem Res Toxicol. 1997 Jun;10(6):672–676. doi: 10.1021/tx960209j. [DOI] [PubMed] [Google Scholar]
- Kaneko-Ishino T., Kuroiwa Y., Miyoshi N., Kohda T., Suzuki R., Yokoyama M., Viville S., Barton S. C., Ishino F., Surani M. A. Peg1/Mest imprinted gene on chromosome 6 identified by cDNA subtraction hybridization. Nat Genet. 1995 Sep;11(1):52–59. doi: 10.1038/ng0995-52. [DOI] [PubMed] [Google Scholar]
- Knehr M., Thomas H., Arand M., Gebel T., Zeller H. D., Oesch F. Isolation and characterization of a cDNA encoding rat liver cytosolic epoxide hydrolase and its functional expression in Escherichia coli. J Biol Chem. 1993 Aug 15;268(23):17623–17627. [PubMed] [Google Scholar]
- Lacourciere G. M., Armstrong R. N. Microsomal and soluble epoxide hydrolases are members of the same family of C-X bond hydrolase enzymes. Chem Res Toxicol. 1994 Mar-Apr;7(2):121–124. doi: 10.1021/tx00038a001. [DOI] [PubMed] [Google Scholar]
- Laughlin L. T., Tzeng H. F., Lin S., Armstrong R. N. Mechanism of microsomal epoxide hydrolase. Semifunctional site-specific mutants affecting the alkylation half-reaction. Biochemistry. 1998 Mar 3;37(9):2897–2904. doi: 10.1021/bi972737f. [DOI] [PubMed] [Google Scholar]
- Moghaddam M. F., Grant D. F., Cheek J. M., Greene J. F., Williamson K. C., Hammock B. D. Bioactivation of leukotoxins to their toxic diols by epoxide hydrolase. Nat Med. 1997 May;3(5):562–566. doi: 10.1038/nm0597-562. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Morisseau C., Archelas A., Guitton C., Faucher D., Furstoss R., Baratti J. C. Purification and characterization of a highly enantioselective epoxide hydrolase from Aspergillus niger. Eur J Biochem. 1999 Jul;263(2):386–395. doi: 10.1046/j.1432-1327.1999.00519.x. [DOI] [PubMed] [Google Scholar]
- Nardini M., Ridder I. S., Rozeboom H. J., Kalk K. H., Rink R., Janssen D. B., Dijkstra B. W. The x-ray structure of epoxide hydrolase from Agrobacterium radiobacter AD1. An enzyme to detoxify harmful epoxides. J Biol Chem. 1999 May 21;274(21):14579–14586. [PubMed] [Google Scholar]
- Ochman H., Gerber A. S., Hartl D. L. Genetic applications of an inverse polymerase chain reaction. Genetics. 1988 Nov;120(3):621–623. doi: 10.1093/genetics/120.3.621. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ollis D. L., Cheah E., Cygler M., Dijkstra B., Frolow F., Franken S. M., Harel M., Remington S. J., Silman I., Schrag J. The alpha/beta hydrolase fold. Protein Eng. 1992 Apr;5(3):197–211. doi: 10.1093/protein/5.3.197. [DOI] [PubMed] [Google Scholar]
- Pinot F., Grant D. F., Beetham J. K., Parker A. G., Borhan B., Landt S., Jones A. D., Hammock B. D. Molecular and biochemical evidence for the involvement of the Asp-333-His-523 pair in the catalytic mechanism of soluble epoxide hydrolase. J Biol Chem. 1995 Apr 7;270(14):7968–7974. doi: 10.1074/jbc.270.14.7968. [DOI] [PubMed] [Google Scholar]
- Porter T. D., Beck T. W., Kasper C. B. Complementary DNA and amino acid sequence of rat liver microsomal, xenobiotic epoxide hydrolase. Arch Biochem Biophys. 1986 Jul;248(1):121–129. doi: 10.1016/0003-9861(86)90408-x. [DOI] [PubMed] [Google Scholar]
- Pries F., Kingma J., Pentenga M., van Pouderoyen G., Jeronimus-Stratingh C. M., Bruins A. P., Janssen D. B. Site-directed mutagenesis and oxygen isotope incorporation studies of the nucleophilic aspartate of haloalkane dehalogenase. Biochemistry. 1994 Feb 8;33(5):1242–1247. doi: 10.1021/bi00171a026. [DOI] [PubMed] [Google Scholar]
- Rink R., Fennema M., Smids M., Dehmel U., Janssen D. B. Primary structure and catalytic mechanism of the epoxide hydrolase from Agrobacterium radiobacter AD1. J Biol Chem. 1997 Jun 6;272(23):14650–14657. doi: 10.1074/jbc.272.23.14650. [DOI] [PubMed] [Google Scholar]
- Rink R., Janssen D. B. Kinetic mechanism of the enantioselective conversion of styrene oxide by epoxide hydrolase from Agrobacterium radiobacter AD1. Biochemistry. 1998 Dec 22;37(51):18119–18127. doi: 10.1021/bi9817257. [DOI] [PubMed] [Google Scholar]
- Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schanstra J. P., Rink R., Pries F., Janssen D. B. Construction of an expression and site-directed mutagenesis system of haloalkane dehalogenase in Escherichia coli. Protein Expr Purif. 1993 Oct;4(5):479–489. doi: 10.1006/prep.1993.1063. [DOI] [PubMed] [Google Scholar]
- Stapleton A., Beetham J. K., Pinot F., Garbarino J. E., Rockhold D. R., Friedman M., Hammock B. D., Belknap W. R. Cloning and expression of soluble epoxide hydrolase from potato. Plant J. 1994 Aug;6(2):251–258. doi: 10.1046/j.1365-313x.1994.6020251.x. [DOI] [PubMed] [Google Scholar]
- Sussman J. L., Harel M., Frolow F., Oefner C., Goldman A., Toker L., Silman I. Atomic structure of acetylcholinesterase from Torpedo californica: a prototypic acetylcholine-binding protein. Science. 1991 Aug 23;253(5022):872–879. doi: 10.1126/science.1678899. [DOI] [PubMed] [Google Scholar]
- Thompson J. D., Higgins D. G., Gibson T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994 Nov 11;22(22):4673–4680. doi: 10.1093/nar/22.22.4673. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tomic M., Sunjevaric I., Savtchenko E. S., Blumenberg M. A rapid and simple method for introducing specific mutations into any position of DNA leaving all other positions unaltered. Nucleic Acids Res. 1990 Mar 25;18(6):1656–1656. doi: 10.1093/nar/18.6.1656. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tzeng H. F., Laughlin L. T., Armstrong R. N. Semifunctional site-specific mutants affecting the hydrolytic half-reaction of microsomal epoxide hydrolase. Biochemistry. 1998 Mar 3;37(9):2905–2911. doi: 10.1021/bi9727388. [DOI] [PubMed] [Google Scholar]
- Verschueren K. H., Seljée F., Rozeboom H. J., Kalk K. H., Dijkstra B. W. Crystallographic analysis of the catalytic mechanism of haloalkane dehalogenase. Nature. 1993 Jun 24;363(6431):693–698. doi: 10.1038/363693a0. [DOI] [PubMed] [Google Scholar]
- Wojtasek H., Prestwich G. D. An insect juvenile hormone-specific epoxide hydrolase is related to vertebrate microsomal epoxide hydrolases. Biochem Biophys Res Commun. 1996 Mar 18;220(2):323–329. doi: 10.1006/bbrc.1996.0404. [DOI] [PubMed] [Google Scholar]