Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1999 Dec 1;344(Pt 2):281–292.

Calreticulin: one protein, one gene, many functions.

M Michalak 1, E F Corbett 1, N Mesaeli 1, K Nakamura 1, M Opas 1
PMCID: PMC1220642  PMID: 10567207

Abstract

The endoplasmic reticulum (ER) plays a critical role in the synthesis and chaperoning of membrane-associated and secreted proteins. The membrane is also an important site of Ca(2+) storage and release. Calreticulin is a unique ER luminal resident protein. The protein affects many cellular functions, both in the ER lumen and outside of the ER environment. In the ER lumen, calreticulin performs two major functions: chaperoning and regulation of Ca(2+) homoeostasis. Calreticulin is a highly versatile lectin-like chaperone, and it participates during the synthesis of a variety of molecules, including ion channels, surface receptors, integrins and transporters. The protein also affects intracellular Ca(2+) homoeostasis by modulation of ER Ca(2+) storage and transport. Studies on the cell biology of calreticulin revealed that the ER membrane is a very dynamic intracellular compartment affecting many aspects of cell physiology.

Full Text

The Full Text of this article is available as a PDF (283.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen S., Bulleid N. J. Calnexin and calreticulin bind to enzymically active tissue-type plasminogen activator during biosynthesis and are not required for folding to the native conformation. Biochem J. 1997 Nov 15;328(Pt 1):113–119. doi: 10.1042/bj3280113. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Andrin C., Pinkoski M. J., Burns K., Atkinson E. A., Krahenbuhl O., Hudig D., Fraser S. A., Winkler U., Tschopp J., Opas M. Interaction between a Ca2+-binding protein calreticulin and perforin, a component of the cytotoxic T-cell granules. Biochemistry. 1998 Jul 21;37(29):10386–10394. doi: 10.1021/bi980595z. [DOI] [PubMed] [Google Scholar]
  3. Arber S., Krause K. H., Caroni P. s-cyclophilin is retained intracellularly via a unique COOH-terminal sequence and colocalizes with the calcium storage protein calreticulin. J Cell Biol. 1992 Jan;116(1):113–125. doi: 10.1083/jcb.116.1.113. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Arosa F. A., de Jesus O., Porto G., Carmo A. M., de Sousa M. Calreticulin is expressed on the cell surface of activated human peripheral blood T lymphocytes in association with major histocompatibility complex class I molecules. J Biol Chem. 1999 Jun 11;274(24):16917–16922. doi: 10.1074/jbc.274.24.16917. [DOI] [PubMed] [Google Scholar]
  5. Atreya C. D., Singh N. K., Nakhasi H. L. The rubella virus RNA binding activity of human calreticulin is localized to the N-terminal domain. J Virol. 1995 Jun;69(6):3848–3851. doi: 10.1128/jvi.69.6.3848-3851.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Baksh S., Burns K., Andrin C., Michalak M. Interaction of calreticulin with protein disulfide isomerase. J Biol Chem. 1995 Dec 29;270(52):31338–31344. doi: 10.1074/jbc.270.52.31338. [DOI] [PubMed] [Google Scholar]
  7. Baksh S., Michalak M. Expression of calreticulin in Escherichia coli and identification of its Ca2+ binding domains. J Biol Chem. 1991 Nov 15;266(32):21458–21465. [PubMed] [Google Scholar]
  8. Baksh S., Spamer C., Heilmann C., Michalak M. Identification of the Zn2+ binding region in calreticulin. FEBS Lett. 1995 Nov 27;376(1-2):53–57. doi: 10.1016/0014-5793(95)01246-4. [DOI] [PubMed] [Google Scholar]
  9. Baksh S., Spamer C., Oikawa K., McCubbin W. D., Heilmann C., Kay C. M., Michalak M. Zn2+ binding to cardiac calsequestrin. Biochem Biophys Res Commun. 1995 Apr 6;209(1):310–315. doi: 10.1006/bbrc.1995.1504. [DOI] [PubMed] [Google Scholar]
  10. Balow J. P., Weissman J. D., Kearse K. P. Unique expression of major histocompatibility complex class I proteins in the absence of glucose trimming and calnexin association. J Biol Chem. 1995 Dec 1;270(48):29025–29029. doi: 10.1074/jbc.270.48.29025. [DOI] [PubMed] [Google Scholar]
  11. Barnes J. A., Smoak I. W. Immunolocalization and heart levels of GRP94 in the mouse during post-implantation development. Anat Embryol (Berl) 1997 Oct;196(4):335–341. doi: 10.1007/s004290050102. [DOI] [PubMed] [Google Scholar]
  12. Barth A. I., Näthke I. S., Nelson W. J. Cadherins, catenins and APC protein: interplay between cytoskeletal complexes and signaling pathways. Curr Opin Cell Biol. 1997 Oct;9(5):683–690. doi: 10.1016/s0955-0674(97)80122-6. [DOI] [PubMed] [Google Scholar]
  13. Bass J., Chiu G., Argon Y., Steiner D. F. Folding of insulin receptor monomers is facilitated by the molecular chaperones calnexin and calreticulin and impaired by rapid dimerization. J Cell Biol. 1998 May 4;141(3):637–646. doi: 10.1083/jcb.141.3.637. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Bastianutto C., Clementi E., Codazzi F., Podini P., De Giorgi F., Rizzuto R., Meldolesi J., Pozzan T. Overexpression of calreticulin increases the Ca2+ capacity of rapidly exchanging Ca2+ stores and reveals aspects of their lumenal microenvironment and function. J Cell Biol. 1995 Aug;130(4):847–855. doi: 10.1083/jcb.130.4.847. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Basu S., Srivastava P. K. Calreticulin, a peptide-binding chaperone of the endoplasmic reticulum, elicits tumor- and peptide-specific immunity. J Exp Med. 1999 Mar 1;189(5):797–802. doi: 10.1084/jem.189.5.797. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Behrens J., Jerchow B. A., Würtele M., Grimm J., Asbrand C., Wirtz R., Kühl M., Wedlich D., Birchmeier W. Functional interaction of an axin homolog, conductin, with beta-catenin, APC, and GSK3beta. Science. 1998 Apr 24;280(5363):596–599. doi: 10.1126/science.280.5363.596. [DOI] [PubMed] [Google Scholar]
  17. Ben-Ze'ev A. Cytoskeletal and adhesion proteins as tumor suppressors. Curr Opin Cell Biol. 1997 Feb;9(1):99–108. doi: 10.1016/s0955-0674(97)80158-5. [DOI] [PubMed] [Google Scholar]
  18. Bergeron J. J., Brenner M. B., Thomas D. Y., Williams D. B. Calnexin: a membrane-bound chaperone of the endoplasmic reticulum. Trends Biochem Sci. 1994 Mar;19(3):124–128. doi: 10.1016/0968-0004(94)90205-4. [DOI] [PubMed] [Google Scholar]
  19. Berridge M. J. Calcium signalling and cell proliferation. Bioessays. 1995 Jun;17(6):491–500. doi: 10.1002/bies.950170605. [DOI] [PubMed] [Google Scholar]
  20. Berridge M. J. Inositol trisphosphate and calcium signalling. Nature. 1993 Jan 28;361(6410):315–325. doi: 10.1038/361315a0. [DOI] [PubMed] [Google Scholar]
  21. Berridge M. J. Neuronal calcium signaling. Neuron. 1998 Jul;21(1):13–26. doi: 10.1016/s0896-6273(00)80510-3. [DOI] [PubMed] [Google Scholar]
  22. Brown M. S., Goldstein J. L. The SREBP pathway: regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor. Cell. 1997 May 2;89(3):331–340. doi: 10.1016/s0092-8674(00)80213-5. [DOI] [PubMed] [Google Scholar]
  23. Burns K., Atkinson E. A., Bleackley R. C., Michalak M. Calreticulin: from Ca2+ binding to control of gene expression. Trends Cell Biol. 1994 May;4(5):152–154. doi: 10.1016/0962-8924(94)90190-2. [DOI] [PubMed] [Google Scholar]
  24. Burns K., Duggan B., Atkinson E. A., Famulski K. S., Nemer M., Bleackley R. C., Michalak M. Modulation of gene expression by calreticulin binding to the glucocorticoid receptor. Nature. 1994 Feb 3;367(6462):476–480. doi: 10.1038/367476a0. [DOI] [PubMed] [Google Scholar]
  25. Burns K., Helgason C. D., Bleackley R. C., Michalak M. Calreticulin in T-lymphocytes. Identification of calreticulin in T-lymphocytes and demonstration that activation of T cells correlates with increased levels of calreticulin mRNA and protein. J Biol Chem. 1992 Sep 25;267(27):19039–19042. [PubMed] [Google Scholar]
  26. Burns K., Opas M., Michalak M. Calreticulin inhibits glucocorticoid- but not cAMP-sensitive expression of tyrosine aminotransferase gene in cultured McA-RH7777 hepatocytes. Mol Cell Biochem. 1997 Jun;171(1-2):37–43. doi: 10.1023/a:1006865108833. [DOI] [PubMed] [Google Scholar]
  27. Burridge K., Chrzanowska-Wodnicka M. Focal adhesions, contractility, and signaling. Annu Rev Cell Dev Biol. 1996;12:463–518. doi: 10.1146/annurev.cellbio.12.1.463. [DOI] [PubMed] [Google Scholar]
  28. Cala S. E., Scott B. T., Jones L. R. Intralumenal sarcoplasmic reticulum Ca(2+)-binding proteins. Semin Cell Biol. 1990 Aug;1(4):265–275. [PubMed] [Google Scholar]
  29. Calnexin, calreticulin and the folding of glycoproteins. Trends Cell Biol. 1997 May;7(5):193–200. doi: 10.1016/S0962-8924(97)01032-5. [DOI] [PubMed] [Google Scholar]
  30. Camacho P., Lechleiter J. D. Calreticulin inhibits repetitive intracellular Ca2+ waves. Cell. 1995 Sep 8;82(5):765–771. doi: 10.1016/0092-8674(95)90473-5. [DOI] [PubMed] [Google Scholar]
  31. Campbell A. M., Kessler P. D., Fambrough D. M. The alternative carboxyl termini of avian cardiac and brain sarcoplasmic reticulum/endoplasmic reticulum Ca(2+)-ATPases are on opposite sides of the membrane. J Biol Chem. 1992 May 5;267(13):9321–9325. [PubMed] [Google Scholar]
  32. Chapman R., Sidrauski C., Walter P. Intracellular signaling from the endoplasmic reticulum to the nucleus. Annu Rev Cell Dev Biol. 1998;14:459–485. doi: 10.1146/annurev.cellbio.14.1.459. [DOI] [PubMed] [Google Scholar]
  33. Chen F., Hayes P. M., Mulrooney D. M., Pan A. Identification and characterization of cDNA clones encoding plant calreticulin in barley. Plant Cell. 1994 Jun;6(6):835–843. doi: 10.1105/tpc.6.6.835. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Chevet E., Lemaître G., Cailleret K., Dahan S., Bergeron J. J., Katinka M. D. Identification and characterization of an intracellular protein complex that binds fibroblast growth factor-2 in bovine brain. Biochem J. 1999 Aug 1;341(Pt 3):713–723. [PMC free article] [PubMed] [Google Scholar]
  35. Choukhi A., Ung S., Wychowski C., Dubuisson J. Involvement of endoplasmic reticulum chaperones in the folding of hepatitis C virus glycoproteins. J Virol. 1998 May;72(5):3851–3858. doi: 10.1128/jvi.72.5.3851-3858.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Clapham D. E. Calcium signaling. Cell. 1995 Jan 27;80(2):259–268. doi: 10.1016/0092-8674(95)90408-5. [DOI] [PubMed] [Google Scholar]
  37. Clementi E., Martino G., Grimaldi L. M., Brambilla E., Meldolesi J. Intracellular Ca2+ stores of T lymphocytes: changes induced by in vitro and in vivo activation. Eur J Immunol. 1994 Jun;24(6):1365–1371. doi: 10.1002/eji.1830240619. [DOI] [PubMed] [Google Scholar]
  38. Conway E. M., Liu L., Nowakowski B., Steiner-Mosonyi M., Ribeiro S. P., Michalak M. Heat shock-sensitive expression of calreticulin. In vitro and in vivo up-regulation. J Biol Chem. 1995 Jul 14;270(28):17011–17016. doi: 10.1074/jbc.270.28.17011. [DOI] [PubMed] [Google Scholar]
  39. Coppolino M. G., Dedhar S. Calreticulin. Int J Biochem Cell Biol. 1998 May;30(5):553–558. doi: 10.1016/s1357-2725(97)00153-2. [DOI] [PubMed] [Google Scholar]
  40. Coppolino M. G., Woodside M. J., Demaurex N., Grinstein S., St-Arnaud R., Dedhar S. Calreticulin is essential for integrin-mediated calcium signalling and cell adhesion. Nature. 1997 Apr 24;386(6627):843–847. doi: 10.1038/386843a0. [DOI] [PubMed] [Google Scholar]
  41. Coppolino M., Leung-Hagesteijn C., Dedhar S., Wilkins J. Inducible interaction of integrin alpha 2 beta 1 with calreticulin. Dependence on the activation state of the integrin. J Biol Chem. 1995 Sep 29;270(39):23132–23138. doi: 10.1074/jbc.270.39.23132. [DOI] [PubMed] [Google Scholar]
  42. Corbett E. F., Oikawa K., Francois P., Tessier D. C., Kay C., Bergeron J. J., Thomas D. Y., Krause K. H., Michalak M. Ca2+ regulation of interactions between endoplasmic reticulum chaperones. J Biol Chem. 1999 Mar 5;274(10):6203–6211. doi: 10.1074/jbc.274.10.6203. [DOI] [PubMed] [Google Scholar]
  43. Coronado R., Morrissette J., Sukhareva M., Vaughan D. M. Structure and function of ryanodine receptors. Am J Physiol. 1994 Jun;266(6 Pt 1):C1485–C1504. doi: 10.1152/ajpcell.1994.266.6.C1485. [DOI] [PubMed] [Google Scholar]
  44. Cox E. A., Huttenlocher A. Regulation of integrin-mediated adhesion during cell migration. Microsc Res Tech. 1998 Dec 1;43(5):412–419. doi: 10.1002/(SICI)1097-0029(19981201)43:5<412::AID-JEMT7>3.0.CO;2-F. [DOI] [PubMed] [Google Scholar]
  45. Crabtree G. R. Generic signals and specific outcomes: signaling through Ca2+, calcineurin, and NF-AT. Cell. 1999 Mar 5;96(5):611–614. doi: 10.1016/s0092-8674(00)80571-1. [DOI] [PubMed] [Google Scholar]
  46. Dai E., Stewart M., Ritchie B., Mesaeli N., Raha S., Kolodziejczyk D., Hobman M. L., Liu L. Y., Etches W., Nation N. Calreticulin, a potential vascular regulatory protein, reduces intimal hyperplasia after arterial injury. Arterioscler Thromb Vasc Biol. 1997 Nov;17(11):2359–2368. doi: 10.1161/01.atv.17.11.2359. [DOI] [PubMed] [Google Scholar]
  47. Daniel J. M., Reynolds A. B. Tyrosine phosphorylation and cadherin/catenin function. Bioessays. 1997 Oct;19(10):883–891. doi: 10.1002/bies.950191008. [DOI] [PubMed] [Google Scholar]
  48. Dedhar S. Novel functions for calreticulin: interaction with integrins and modulation of gene expression? Trends Biochem Sci. 1994 Jul;19(7):269–271. doi: 10.1016/0968-0004(94)90001-9. [DOI] [PubMed] [Google Scholar]
  49. Dedhar S., Rennie P. S., Shago M., Hagesteijn C. Y., Yang H., Filmus J., Hawley R. G., Bruchovsky N., Cheng H., Matusik R. J. Inhibition of nuclear hormone receptor activity by calreticulin. Nature. 1994 Feb 3;367(6462):480–483. doi: 10.1038/367480a0. [DOI] [PubMed] [Google Scholar]
  50. Degen E., Williams D. B. Participation of a novel 88-kD protein in the biogenesis of murine class I histocompatibility molecules. J Cell Biol. 1991 Mar;112(6):1099–1115. doi: 10.1083/jcb.112.6.1099. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Denning G. M., Leidal K. G., Holst V. A., Iyer S. S., Pearson D. W., Clark J. R., Nauseef W. M., Clark R. A. Calreticulin biosynthesis and processing in human myeloid cells: demonstration of signal peptide cleavage and N-glycosylation. Blood. 1997 Jul 1;90(1):372–381. [PubMed] [Google Scholar]
  52. Desai D., Michalak M., Singh N. K., Niles R. M. Inhibition of retinoic acid receptor function and retinoic acid-regulated gene expression in mouse melanoma cells by calreticulin. A potential pathway for cyclic AMP regulation of retinoid action. J Biol Chem. 1996 Jun 21;271(25):15153–15159. doi: 10.1074/jbc.271.25.15153. [DOI] [PubMed] [Google Scholar]
  53. Dresselhaus T., Hagel C., Lörz H., Kranz E. Isolation of a full-length cDNA encoding calreticulin from a PCR library of in vitro zygotes of maize. Plant Mol Biol. 1996 Apr;31(1):23–34. doi: 10.1007/BF00020603. [DOI] [PubMed] [Google Scholar]
  54. Dupuis M., Schaerer E., Krause K. H., Tschopp J. The calcium-binding protein calreticulin is a major constituent of lytic granules in cytolytic T lymphocytes. J Exp Med. 1993 Jan 1;177(1):1–7. doi: 10.1084/jem.177.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Eggleton P., Reid K. B., Kishore U., Sontheimer R. D. Clinical relevance of calreticulin in systemic lupus erythematosus. Lupus. 1997;6(7):564–571. doi: 10.1177/096120339700600703. [DOI] [PubMed] [Google Scholar]
  56. Elliott J. G., Oliver J. D., High S. The thiol-dependent reductase ERp57 interacts specifically with N-glycosylated integral membrane proteins. J Biol Chem. 1997 May 23;272(21):13849–13855. doi: 10.1074/jbc.272.21.13849. [DOI] [PubMed] [Google Scholar]
  57. Enyedi P., Szabadkai G., Krause K. H., Lew D. P., Spät A. Inositol 1,4,5-trisphosphate binding sites copurify with the putative Ca-storage protein calreticulin in rat liver. Cell Calcium. 1993 Jun;14(6):485–492. doi: 10.1016/0143-4160(93)90007-s. [DOI] [PubMed] [Google Scholar]
  58. Fadel M. P., Dziak E., Lo C. M., Ferrier J., Mesaeli N., Michalak M., Opas M. Calreticulin affects focal contact-dependent but not close contact-dependent cell-substratum adhesion. J Biol Chem. 1999 May 21;274(21):15085–15094. doi: 10.1074/jbc.274.21.15085. [DOI] [PubMed] [Google Scholar]
  59. Fasolato C., Pizzo P., Pozzan T. Delayed activation of the store-operated calcium current induced by calreticulin overexpression in RBL-1 cells. Mol Biol Cell. 1998 Jun;9(6):1513–1522. doi: 10.1091/mbc.9.6.1513. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Fliegel L., Burns K., MacLennan D. H., Reithmeier R. A., Michalak M. Molecular cloning of the high affinity calcium-binding protein (calreticulin) of skeletal muscle sarcoplasmic reticulum. J Biol Chem. 1989 Dec 25;264(36):21522–21528. [PubMed] [Google Scholar]
  61. Fliegel L., Burns K., Opas M., Michalak M. The high-affinity calcium binding protein of sarcoplasmic reticulum. Tissue distribution, and homology with calregulin. Biochim Biophys Acta. 1989 Jun 26;982(1):1–8. doi: 10.1016/0005-2736(89)90166-1. [DOI] [PubMed] [Google Scholar]
  62. Fraser S. A., Michalak M., Welch W. H., Hudig D. Calreticulin, a component of the endoplasmic reticulum and of cytotoxic lymphocyte granules, regulates perforin-mediated lysis in the hemolytic model system. Biochem Cell Biol. 1998;76(5):881–887. doi: 10.1139/bcb-76-5-881. [DOI] [PubMed] [Google Scholar]
  63. Furuichi T., Mikoshiba K. Inositol 1, 4, 5-trisphosphate receptor-mediated Ca2+ signaling in the brain. J Neurochem. 1995 Mar;64(3):953–960. doi: 10.1046/j.1471-4159.1995.64030953.x. [DOI] [PubMed] [Google Scholar]
  64. Ghosh A., Greenberg M. E. Calcium signaling in neurons: molecular mechanisms and cellular consequences. Science. 1995 Apr 14;268(5208):239–247. doi: 10.1126/science.7716515. [DOI] [PubMed] [Google Scholar]
  65. Gray A. J., Park P. W., Broekelmann T. J., Laurent G. J., Reeves J. T., Stenmark K. R., Mecham R. P. The mitogenic effects of the B beta chain of fibrinogen are mediated through cell surface calreticulin. J Biol Chem. 1995 Nov 3;270(44):26602–26606. doi: 10.1074/jbc.270.44.26602. [DOI] [PubMed] [Google Scholar]
  66. Greber U. F., Gerace L. Depletion of calcium from the lumen of endoplasmic reticulum reversibly inhibits passive diffusion and signal-mediated transport into the nucleus. J Cell Biol. 1995 Jan;128(1-2):5–14. doi: 10.1083/jcb.128.1.5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  67. Halaban R., Cheng E., Zhang Y., Moellmann G., Hanlon D., Michalak M., Setaluri V., Hebert D. N. Aberrant retention of tyrosinase in the endoplasmic reticulum mediates accelerated degradation of the enzyme and contributes to the dedifferentiated phenotype of amelanotic melanoma cells. Proc Natl Acad Sci U S A. 1997 Jun 10;94(12):6210–6215. doi: 10.1073/pnas.94.12.6210. [DOI] [PMC free article] [PubMed] [Google Scholar]
  68. Hammond C., Helenius A. Quality control in the secretory pathway. Curr Opin Cell Biol. 1995 Aug;7(4):523–529. doi: 10.1016/0955-0674(95)80009-3. [DOI] [PubMed] [Google Scholar]
  69. Hanks S. K., Polte T. R. Signaling through focal adhesion kinase. Bioessays. 1997 Feb;19(2):137–145. doi: 10.1002/bies.950190208. [DOI] [PubMed] [Google Scholar]
  70. Harris M. R., Yu Y. Y., Kindle C. S., Hansen T. H., Solheim J. C. Calreticulin and calnexin interact with different protein and glycan determinants during the assembly of MHC class I. J Immunol. 1998 Jun 1;160(11):5404–5409. [PubMed] [Google Scholar]
  71. Hawn T. R., Tom T. D., Strand M. Molecular cloning and expression of SmIrV1, a Schistosoma mansoni antigen with similarity to calnexin, calreticulin, and OvRal1. J Biol Chem. 1993 Apr 15;268(11):7692–7698. [PubMed] [Google Scholar]
  72. Hazan R. B., Kang L., Roe S., Borgen P. I., Rimm D. L. Vinculin is associated with the E-cadherin adhesion complex. J Biol Chem. 1997 Dec 19;272(51):32448–32453. doi: 10.1074/jbc.272.51.32448. [DOI] [PubMed] [Google Scholar]
  73. Hazan R. B., Norton L. The epidermal growth factor receptor modulates the interaction of E-cadherin with the actin cytoskeleton. J Biol Chem. 1998 Apr 10;273(15):9078–9084. doi: 10.1074/jbc.273.15.9078. [DOI] [PubMed] [Google Scholar]
  74. Hebert D. N., Foellmer B., Helenius A. Calnexin and calreticulin promote folding, delay oligomerization and suppress degradation of influenza hemagglutinin in microsomes. EMBO J. 1996 Jun 17;15(12):2961–2968. [PMC free article] [PubMed] [Google Scholar]
  75. Hebert D. N., Simons J. F., Peterson J. R., Helenius A. Calnexin, calreticulin, and Bip/Kar2p in protein folding. Cold Spring Harb Symp Quant Biol. 1995;60:405–415. doi: 10.1101/sqb.1995.060.01.045. [DOI] [PubMed] [Google Scholar]
  76. Hebert D. N., Zhang J. X., Chen W., Foellmer B., Helenius A. The number and location of glycans on influenza hemagglutinin determine folding and association with calnexin and calreticulin. J Cell Biol. 1997 Nov 3;139(3):613–623. doi: 10.1083/jcb.139.3.613. [DOI] [PMC free article] [PubMed] [Google Scholar]
  77. Heilmann C., Spamer C., Leberer E., Gerok W., Michalak M. Human liver calreticulin: characterization and Zn(2+)-dependent interaction with phenyl-sepharose. Biochem Biophys Res Commun. 1993 Jun 15;193(2):611–616. doi: 10.1006/bbrc.1993.1668. [DOI] [PubMed] [Google Scholar]
  78. Huggins M. C., Gibbs J., Moloney N. A. Cloning of a Schistosoma japonicum gene encoding an antigen with homology to calreticulin. Mol Biochem Parasitol. 1995 Apr;71(1):81–87. doi: 10.1016/0166-6851(95)00038-3. [DOI] [PubMed] [Google Scholar]
  79. Huttenlocher A., Lakonishok M., Kinder M., Wu S., Truong T., Knudsen K. A., Horwitz A. F. Integrin and cadherin synergy regulates contact inhibition of migration and motile activity. J Cell Biol. 1998 Apr 20;141(2):515–526. doi: 10.1083/jcb.141.2.515. [DOI] [PMC free article] [PubMed] [Google Scholar]
  80. Ikeda S., Kishida S., Yamamoto H., Murai H., Koyama S., Kikuchi A. Axin, a negative regulator of the Wnt signaling pathway, forms a complex with GSK-3beta and beta-catenin and promotes GSK-3beta-dependent phosphorylation of beta-catenin. EMBO J. 1998 Mar 2;17(5):1371–1384. doi: 10.1093/emboj/17.5.1371. [DOI] [PMC free article] [PubMed] [Google Scholar]
  81. Ivessa N. E., De Lemos-Chiarandini C., Gravotta D., Sabatini D. D., Kreibich G. The Brefeldin A-induced retrograde transport from the Golgi apparatus to the endoplasmic reticulum depends on calcium sequestered to intracellular stores. J Biol Chem. 1995 Oct 27;270(43):25960–25967. doi: 10.1074/jbc.270.43.25960. [DOI] [PubMed] [Google Scholar]
  82. Jaworski D. C., Higgins J. A., Radulovic S., Vaughan J. A., Azad A. F. Presence of calreticulin in vector fleas (Siphonaptera). J Med Entomol. 1996 May;33(3):482–489. doi: 10.1093/jmedent/33.3.482. [DOI] [PubMed] [Google Scholar]
  83. Jethmalani S. M., Henle K. J. Calreticulin associates with stress proteins: implications for chaperone function during heat stress. J Cell Biochem. 1998 Apr 1;69(1):30–43. doi: 10.1002/(sici)1097-4644(19980401)69:1<30::aid-jcb4>3.0.co;2-w. [DOI] [PubMed] [Google Scholar]
  84. Jethmalani S. M., Henle K. J., Kaushal G. P. Heat shock-induced prompt glycosylation. Identification of P-SG67 as calreticulin. J Biol Chem. 1994 Sep 23;269(38):23603–23609. [PubMed] [Google Scholar]
  85. John L. M., Lechleiter J. D., Camacho P. Differential modulation of SERCA2 isoforms by calreticulin. J Cell Biol. 1998 Aug 24;142(4):963–973. doi: 10.1083/jcb.142.4.963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  86. Johnson E., Henzel W., Deisseroth A. An isoform of protein disulfide isomerase isolated from chronic myelogenous leukemia cells alters complex formation between nuclear proteins and regulatory regions of interferon-inducible genes. J Biol Chem. 1992 Jul 15;267(20):14412–14417. [PubMed] [Google Scholar]
  87. Johnson R. J., Liu N. G., Fishman J. B., Dixon J. D., Fine R. E. Isolation of a calreticulin-like calcium binding protein from bovine brain. Brain Res Mol Brain Res. 1992 Jan;12(1-3):69–76. doi: 10.1016/0169-328x(92)90069-n. [DOI] [PubMed] [Google Scholar]
  88. Johnson R. J., Pyun H. Y., Lytton J., Fine R. E. Differences in the subcellular localization of calreticulin and organellar Ca(2+)-ATPase in neurons. Brain Res Mol Brain Res. 1993 Jan;17(1-2):9–16. doi: 10.1016/0169-328x(93)90066-x. [DOI] [PubMed] [Google Scholar]
  89. Kaufman R. J. Stress signaling from the lumen of the endoplasmic reticulum: coordination of gene transcriptional and translational controls. Genes Dev. 1999 May 15;13(10):1211–1233. doi: 10.1101/gad.13.10.1211. [DOI] [PubMed] [Google Scholar]
  90. Khalife J., Trottein F., Schacht A. M., Godin C., Pierce R. J., Capron A. Cloning of the gene encoding a Schistosoma mansoni antigen homologous to human Ro/SS-A autoantigen. Mol Biochem Parasitol. 1993 Feb;57(2):193–202. doi: 10.1016/0166-6851(93)90195-4. [DOI] [PubMed] [Google Scholar]
  91. Kim P. S., Arvan P. Calnexin and BiP act as sequential molecular chaperones during thyroglobulin folding in the endoplasmic reticulum. J Cell Biol. 1995 Jan;128(1-2):29–38. doi: 10.1083/jcb.128.1.29. [DOI] [PMC free article] [PubMed] [Google Scholar]
  92. Krause K. H., Michalak M. Calreticulin. Cell. 1997 Feb 21;88(4):439–443. doi: 10.1016/s0092-8674(00)81884-x. [DOI] [PubMed] [Google Scholar]
  93. Krause K. H., Simmerman H. K., Jones L. R., Campbell K. P. Sequence similarity of calreticulin with a Ca2(+)-binding protein that co-purifies with an Ins(1,4,5)P3-sensitive Ca2+ store in HL-60 cells. Biochem J. 1990 Sep 1;270(2):545–548. doi: 10.1042/bj2700545. [DOI] [PMC free article] [PubMed] [Google Scholar]
  94. Kuwabara K., Pinsky D. J., Schmidt A. M., Benedict C., Brett J., Ogawa S., Broekman M. J., Marcus A. J., Sciacca R. R., Michalak M. Calreticulin, an antithrombotic agent which binds to vitamin K-dependent coagulation factors, stimulates endothelial nitric oxide production, and limits thrombosis in canine coronary arteries. J Biol Chem. 1995 Apr 7;270(14):8179–8187. doi: 10.1074/jbc.270.14.8179. [DOI] [PubMed] [Google Scholar]
  95. Kuznetsov G., Chen L. B., Nigam S. K. Multiple molecular chaperones complex with misfolded large oligomeric glycoproteins in the endoplasmic reticulum. J Biol Chem. 1997 Jan 31;272(5):3057–3063. doi: 10.1074/jbc.272.5.3057. [DOI] [PubMed] [Google Scholar]
  96. Kwiatkowski B. A., Zielińska-Kwiatkowska A. G., Migdalski A., Kleczkowski L. A., Wasilewska L. D. Cloning of two cDNAs encoding calnexin-like and calreticulin-like proteins from maize (Zea mays) leaves: identification of potential calcium-binding domains. Gene. 1995 Nov 20;165(2):219–222. doi: 10.1016/0378-1119(95)00537-g. [DOI] [PubMed] [Google Scholar]
  97. Labriola C., Cazzulo J. J., Parodi A. J. Trypanosoma cruzi calreticulin is a lectin that binds monoglucosylated oligosaccharides but not protein moieties of glycoproteins. Mol Biol Cell. 1999 May;10(5):1381–1394. doi: 10.1091/mbc.10.5.1381. [DOI] [PMC free article] [PubMed] [Google Scholar]
  98. Leung-Hagesteijn C. Y., Milankov K., Michalak M., Wilkins J., Dedhar S. Cell attachment to extracellular matrix substrates is inhibited upon downregulation of expression of calreticulin, an intracellular integrin alpha-subunit-binding protein. J Cell Sci. 1994 Mar;107(Pt 3):589–600. [PubMed] [Google Scholar]
  99. Lin P., Le-Niculescu H., Hofmeister R., McCaffery J. M., Jin M., Hennemann H., McQuistan T., De Vries L., Farquhar M. G. The mammalian calcium-binding protein, nucleobindin (CALNUC), is a Golgi resident protein. J Cell Biol. 1998 Jun 29;141(7):1515–1527. doi: 10.1083/jcb.141.7.1515. [DOI] [PMC free article] [PubMed] [Google Scholar]
  100. Linnik K. M., Herscovitz H. Multiple molecular chaperones interact with apolipoprotein B during its maturation. The network of endoplasmic reticulum-resident chaperones (ERp72, GRP94, calreticulin, and BiP) interacts with apolipoprotein b regardless of its lipidation state. J Biol Chem. 1998 Aug 14;273(33):21368–21373. doi: 10.1074/jbc.273.33.21368. [DOI] [PubMed] [Google Scholar]
  101. Little E., Ramakrishnan M., Roy B., Gazit G., Lee A. S. The glucose-regulated proteins (GRP78 and GRP94): functions, gene regulation, and applications. Crit Rev Eukaryot Gene Expr. 1994;4(1):1–18. doi: 10.1615/critreveukargeneexpr.v4.i1.10. [DOI] [PubMed] [Google Scholar]
  102. Liu N., Fine R. E., Johnson R. J. Comparison of cDNAs from bovine brain coding for two isoforms of calreticulin. Biochim Biophys Acta. 1993 Sep 3;1202(1):70–76. doi: 10.1016/0167-4838(93)90064-x. [DOI] [PubMed] [Google Scholar]
  103. Liu N., Fine R. E., Simons E., Johnson R. J. Decreasing calreticulin expression lowers the Ca2+ response to bradykinin and increases sensitivity to ionomycin in NG-108-15 cells. J Biol Chem. 1994 Nov 18;269(46):28635–28639. [PubMed] [Google Scholar]
  104. Lièvremont J. P., Rizzuto R., Hendershot L., Meldolesi J. BiP, a major chaperone protein of the endoplasmic reticulum lumen, plays a direct and important role in the storage of the rapidly exchanging pool of Ca2+. J Biol Chem. 1997 Dec 5;272(49):30873–30879. doi: 10.1074/jbc.272.49.30873. [DOI] [PubMed] [Google Scholar]
  105. Llewellyn D. H., Sheikh F. N., Kendall J. M., Campbell A. K. Upregulation of calreticulin expression in HeLa cells by calcium-stress. Biochem Soc Trans. 1995 May;23(2):330S–330S. doi: 10.1042/bst023330s. [DOI] [PubMed] [Google Scholar]
  106. Llewelyn Roderick H., Llewellyn D. H., Campbell A. K., Kendall J. M. Role of calreticulin in regulating intracellular Ca2+ storage and capacitative Ca2+ entry in HeLa cells. Cell Calcium. 1998 Oct;24(4):253–262. doi: 10.1016/s0143-4160(98)90049-5. [DOI] [PubMed] [Google Scholar]
  107. Lucero H. A., Lebeche D., Kaminer B. ERcalcistorin/protein disulfide isomerase (PDI). Sequence determination and expression of a cDNA clone encoding a calcium storage protein with PDI activity from endoplasmic reticulum of the sea urchin egg. J Biol Chem. 1994 Sep 16;269(37):23112–23119. [PubMed] [Google Scholar]
  108. Lucero H. A., Lebeche D., Kaminer B. ERcalcistorin/protein-disulfide isomerase acts as a calcium storage protein in the endoplasmic reticulum of a living cell. Comparison with calreticulin and calsequestrin. J Biol Chem. 1998 Apr 17;273(16):9857–9863. doi: 10.1074/jbc.273.16.9857. [DOI] [PubMed] [Google Scholar]
  109. Lytton J., Westlin M., Burk S. E., Shull G. E., MacLennan D. H. Functional comparisons between isoforms of the sarcoplasmic or endoplasmic reticulum family of calcium pumps. J Biol Chem. 1992 Jul 15;267(20):14483–14489. [PubMed] [Google Scholar]
  110. Lytton J., Westlin M., Hanley M. R. Thapsigargin inhibits the sarcoplasmic or endoplasmic reticulum Ca-ATPase family of calcium pumps. J Biol Chem. 1991 Sep 15;266(26):17067–17071. [PubMed] [Google Scholar]
  111. Lytton J., Zarain-Herzberg A., Periasamy M., MacLennan D. H. Molecular cloning of the mammalian smooth muscle sarco(endo)plasmic reticulum Ca2+-ATPase. J Biol Chem. 1989 Apr 25;264(12):7059–7065. [PubMed] [Google Scholar]
  112. MacLennan D. H., Rice W. J., Green N. M. The mechanism of Ca2+ transport by sarco(endo)plasmic reticulum Ca2+-ATPases. J Biol Chem. 1997 Nov 14;272(46):28815–28818. doi: 10.1074/jbc.272.46.28815. [DOI] [PubMed] [Google Scholar]
  113. Macaulay C., Forbes D. J. Assembly of the nuclear pore: biochemically distinct steps revealed with NEM, GTP gamma S, and BAPTA. J Cell Biol. 1996 Jan;132(1-2):5–20. doi: 10.1083/jcb.132.1.5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  114. Majeed M., Krause K. H., Clark R. A., Kihlström E., Stendahl O. Localization of intracellular Ca2+ stores in HeLa cells during infection with Chlamydia trachomatis. J Cell Sci. 1999 Jan;112(Pt 1):35–44. doi: 10.1242/jcs.112.1.35. [DOI] [PubMed] [Google Scholar]
  115. Margolese L., Waneck G. L., Suzuki C. K., Degen E., Flavell R. A., Williams D. B. Identification of the region on the class I histocompatibility molecule that interacts with the molecular chaperone, p88 (calnexin, IP90). J Biol Chem. 1993 Aug 25;268(24):17959–17966. [PubMed] [Google Scholar]
  116. Matsuoka K., Seta K., Yamakawa Y., Okuyama T., Shinoda T., Isobe T. Covalent structure of bovine brain calreticulin. Biochem J. 1994 Mar 1;298(Pt 2):435–442. doi: 10.1042/bj2980435. [DOI] [PMC free article] [PubMed] [Google Scholar]
  117. Mazzarella R. A., Gold P., Cunningham M., Green M. Determination of the sequence of an expressible cDNA clone encoding ERp60/calregulin by the use of a novel nested set method. Gene. 1992 Oct 21;120(2):217–225. doi: 10.1016/0378-1119(92)90096-8. [DOI] [PubMed] [Google Scholar]
  118. McCauliffe D. P., Yang Y. S., Wilson J., Sontheimer R. D., Capra J. D. The 5'-flanking region of the human calreticulin gene shares homology with the human GRP78, GRP94, and protein disulfide isomerase promoters. J Biol Chem. 1992 Feb 5;267(4):2557–2562. [PubMed] [Google Scholar]
  119. McCool D. J., Okada Y., Forstner J. F., Forstner G. G. Roles of calreticulin and calnexin during mucin synthesis in LS180 and HT29/A1 human colonic adenocarcinoma cells. Biochem J. 1999 Aug 1;341(Pt 3):593–600. [PMC free article] [PubMed] [Google Scholar]
  120. McMillan D. R., Gething M. J., Sambrook J. The cellular response to unfolded proteins: intercompartmental signaling. Curr Opin Biotechnol. 1994 Oct;5(5):540–545. doi: 10.1016/0958-1669(94)90071-x. [DOI] [PubMed] [Google Scholar]
  121. McPherson P. S., Campbell K. P. The ryanodine receptor/Ca2+ release channel. J Biol Chem. 1993 Jul 5;268(19):13765–13768. [PubMed] [Google Scholar]
  122. Meldolesi J. Calcium signalling. Oscillation, activation, expression. Nature. 1998 Apr 30;392(6679):863, 865-6. doi: 10.1038/31804. [DOI] [PubMed] [Google Scholar]
  123. Meldolesi J., Pozzan T. The heterogeneity of ER Ca2+ stores has a key role in nonmuscle cell signaling and function. J Cell Biol. 1998 Sep 21;142(6):1395–1398. doi: 10.1083/jcb.142.6.1395. [DOI] [PMC free article] [PubMed] [Google Scholar]
  124. Mery L., Mesaeli N., Michalak M., Opas M., Lew D. P., Krause K. H. Overexpression of calreticulin increases intracellular Ca2+ storage and decreases store-operated Ca2+ influx. J Biol Chem. 1996 Apr 19;271(16):9332–9339. doi: 10.1074/jbc.271.16.9332. [DOI] [PubMed] [Google Scholar]
  125. Mesaeli N., Nakamura K., Zvaritch E., Dickie P., Dziak E., Krause K. H., Opas M., MacLennan D. H., Michalak M. Calreticulin is essential for cardiac development. J Cell Biol. 1999 Mar 8;144(5):857–868. doi: 10.1083/jcb.144.5.857. [DOI] [PMC free article] [PubMed] [Google Scholar]
  126. Michalak M., Baksh S., Opas M. Identification and immunolocalization of calreticulin in pancreatic cells: no evidence for "calciosomes". Exp Cell Res. 1991 Nov;197(1):91–99. doi: 10.1016/0014-4827(91)90484-c. [DOI] [PubMed] [Google Scholar]
  127. Michalak M., Burns K., Andrin C., Mesaeli N., Jass G. H., Busaan J. L., Opas M. Endoplasmic reticulum form of calreticulin modulates glucocorticoid-sensitive gene expression. J Biol Chem. 1996 Nov 15;271(46):29436–29445. doi: 10.1074/jbc.271.46.29436. [DOI] [PubMed] [Google Scholar]
  128. Michalak M., Milner R. E., Burns K., Opas M. Calreticulin. Biochem J. 1992 Aug 1;285(Pt 3):681–692. doi: 10.1042/bj2850681. [DOI] [PMC free article] [PubMed] [Google Scholar]
  129. Michikawa T., Hamanaka H., Otsu H., Yamamoto A., Miyawaki A., Furuichi T., Tashiro Y., Mikoshiba K. Transmembrane topology and sites of N-glycosylation of inositol 1,4,5-trisphosphate receptor. J Biol Chem. 1994 Mar 25;269(12):9184–9189. [PubMed] [Google Scholar]
  130. Milner R. E., Baksh S., Shemanko C., Carpenter M. R., Smillie L., Vance J. E., Opas M., Michalak M. Calreticulin, and not calsequestrin, is the major calcium binding protein of smooth muscle sarcoplasmic reticulum and liver endoplasmic reticulum. J Biol Chem. 1991 Apr 15;266(11):7155–7165. [PubMed] [Google Scholar]
  131. Milner R. E., Famulski K. S., Michalak M. Calcium binding proteins in the sarcoplasmic/endoplasmic reticulum of muscle and nonmuscle cells. Mol Cell Biochem. 1992 May 13;112(1):1–13. doi: 10.1007/BF00229637. [DOI] [PubMed] [Google Scholar]
  132. Miyawaki A., Llopis J., Heim R., McCaffery J. M., Adams J. A., Ikura M., Tsien R. Y. Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin. Nature. 1997 Aug 28;388(6645):882–887. doi: 10.1038/42264. [DOI] [PubMed] [Google Scholar]
  133. Molkentin J. D., Lu J. R., Antos C. L., Markham B., Richardson J., Robbins J., Grant S. R., Olson E. N. A calcineurin-dependent transcriptional pathway for cardiac hypertrophy. Cell. 1998 Apr 17;93(2):215–228. doi: 10.1016/s0092-8674(00)81573-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  134. Nagaya N., Schulteis C. T., Papazian D. M. Calnexin associates with Shaker K+ channel protein but is not involved in quality control of subunit folding or assembly. Receptors Channels. 1999;6(4):229–239. [PubMed] [Google Scholar]
  135. Nakamura M., Moriya M., Baba T., Michikawa Y., Yamanobe T., Arai K., Okinaga S., Kobayashi T. An endoplasmic reticulum protein, calreticulin, is transported into the acrosome of rat sperm. Exp Cell Res. 1993 Mar;205(1):101–110. doi: 10.1006/excr.1993.1063. [DOI] [PubMed] [Google Scholar]
  136. Nakhasi H. L., Pogue G. P., Duncan R. C., Joshi M., Atreya C. D., Lee N. S., Dwyer D. M. Implications of calreticulin function in parasite biology. Parasitol Today. 1998 Apr;14(4):157–160. doi: 10.1016/s0169-4758(97)01180-0. [DOI] [PubMed] [Google Scholar]
  137. Nakhasi H. L., Singh N. K., Pogue G. P., Cao X. Q., Rouault T. A. Identification and characterization of host factor interactions with cis-acting elements of rubella virus RNA. Arch Virol Suppl. 1994;9:255–267. doi: 10.1007/978-3-7091-9326-6_26. [DOI] [PubMed] [Google Scholar]
  138. Nash P. D., Opas M., Michalak M. Calreticulin: not just another calcium-binding protein. Mol Cell Biochem. 1994 Jun 15;135(1):71–78. doi: 10.1007/BF00925962. [DOI] [PubMed] [Google Scholar]
  139. Nauseef W. M., McCormick S. J., Clark R. A. Calreticulin functions as a molecular chaperone in the biosynthesis of myeloperoxidase. J Biol Chem. 1995 Mar 3;270(9):4741–4747. doi: 10.1074/jbc.270.9.4741. [DOI] [PubMed] [Google Scholar]
  140. Nauseef W. M., McCormick S. J., Goedken M. Coordinated participation of calreticulin and calnexin in the biosynthesis of myeloperoxidase. J Biol Chem. 1998 Mar 20;273(12):7107–7111. doi: 10.1074/jbc.273.12.7107. [DOI] [PubMed] [Google Scholar]
  141. Navazio L., Baldan B., Mariani P., Gerwig G. J., Vliegenthart J. F. Primary structure of the N-linked carbohydrate chains of Calreticulin from spinach leaves. Glycoconj J. 1996 Dec;13(6):977–983. doi: 10.1007/BF01053193. [DOI] [PubMed] [Google Scholar]
  142. Navazio L., Nardi M. C., Pancaldi S., Dainese P., Baldan B., Fitchette-Lainé A. C., Faye L., Meggio F., Martin W., Mariani P. Functional conservation of calreticulin in Euglena gracilis. J Eukaryot Microbiol. 1998 May-Jun;45(3):307–313. doi: 10.1111/j.1550-7408.1998.tb04541.x. [DOI] [PubMed] [Google Scholar]
  143. Nguyen T. O., Capra J. D., Sontheimer R. D. Calreticulin is transcriptionally upregulated by heat shock, calcium and heavy metals. Mol Immunol. 1996 Mar-Apr;33(4-5):379–386. doi: 10.1016/0161-5890(95)00149-2. [DOI] [PubMed] [Google Scholar]
  144. Nicchitta C. V. Biochemical, cell biological and immunological issues surrounding the endoplasmic reticulum chaperone GRP94/gp96. Curr Opin Immunol. 1998 Feb;10(1):103–109. doi: 10.1016/s0952-7915(98)80039-3. [DOI] [PubMed] [Google Scholar]
  145. Nigam S. K., Goldberg A. L., Ho S., Rohde M. F., Bush K. T., Sherman MYu A set of endoplasmic reticulum proteins possessing properties of molecular chaperones includes Ca(2+)-binding proteins and members of the thioredoxin superfamily. J Biol Chem. 1994 Jan 21;269(3):1744–1749. [PubMed] [Google Scholar]
  146. Nolan G. P. Cardiac development. Transcription and the broken heart. Nature. 1998 Mar 12;392(6672):129–130. doi: 10.1038/32290. [DOI] [PubMed] [Google Scholar]
  147. Oliver J. D., Hresko R. C., Mueckler M., High S. The glut 1 glucose transporter interacts with calnexin and calreticulin. J Biol Chem. 1996 Jun 7;271(23):13691–13696. doi: 10.1074/jbc.271.23.13691. [DOI] [PubMed] [Google Scholar]
  148. Oliver J. D., Roderick H. L., Llewellyn D. H., High S. ERp57 functions as a subunit of specific complexes formed with the ER lectins calreticulin and calnexin. Mol Biol Cell. 1999 Aug;10(8):2573–2582. doi: 10.1091/mbc.10.8.2573. [DOI] [PMC free article] [PubMed] [Google Scholar]
  149. Olson E. N., Srivastava D. Molecular pathways controlling heart development. Science. 1996 May 3;272(5262):671–676. doi: 10.1126/science.272.5262.671. [DOI] [PubMed] [Google Scholar]
  150. Opas M., Dziak E., Fliegel L., Michalak M. Regulation of expression and intracellular distribution of calreticulin, a major calcium binding protein of nonmuscle cells. J Cell Physiol. 1991 Oct;149(1):160–171. doi: 10.1002/jcp.1041490120. [DOI] [PubMed] [Google Scholar]
  151. Opas M., Szewczenko-Pawlikowski M., Jass G. K., Mesaeli N., Michalak M. Calreticulin modulates cell adhesiveness via regulation of vinculin expression. J Cell Biol. 1996 Dec;135(6 Pt 2):1913–1923. doi: 10.1083/jcb.135.6.1913. [DOI] [PMC free article] [PubMed] [Google Scholar]
  152. Ostwald T. J., MacLennan D. H. Isolation of a high affinity calcium-binding protein from sarcoplasmic reticulum. J Biol Chem. 1974 Feb 10;249(3):974–979. [PubMed] [Google Scholar]
  153. Otteken A., Moss B. Calreticulin interacts with newly synthesized human immunodeficiency virus type 1 envelope glycoprotein, suggesting a chaperone function similar to that of calnexin. J Biol Chem. 1996 Jan 5;271(1):97–103. doi: 10.1074/jbc.271.1.97. [DOI] [PubMed] [Google Scholar]
  154. Pahl H. L., Baeuerle P. A. The ER-overload response: activation of NF-kappa B. Trends Biochem Sci. 1997 Feb;22(2):63–67. doi: 10.1016/s0968-0004(96)10073-6. [DOI] [PubMed] [Google Scholar]
  155. Parekh A. B., Penner R. Store depletion and calcium influx. Physiol Rev. 1997 Oct;77(4):901–930. doi: 10.1152/physrev.1997.77.4.901. [DOI] [PubMed] [Google Scholar]
  156. Parlati F., Dominguez M., Bergeron J. J., Thomas D. Y. Saccharomyces cerevisiae CNE1 encodes an endoplasmic reticulum (ER) membrane protein with sequence similarity to calnexin and calreticulin and functions as a constituent of the ER quality control apparatus. J Biol Chem. 1995 Jan 6;270(1):244–253. doi: 10.1074/jbc.270.1.244. [DOI] [PubMed] [Google Scholar]
  157. Perrone L., Tell G., Di Lauro R. Calreticulin enhances the transcriptional activity of thyroid transcription factor-1 by binding to its homeodomain. J Biol Chem. 1999 Feb 19;274(8):4640–4645. doi: 10.1074/jbc.274.8.4640. [DOI] [PubMed] [Google Scholar]
  158. Petersen O. H., Petersen C. C., Kasai H. Calcium and hormone action. Annu Rev Physiol. 1994;56:297–319. doi: 10.1146/annurev.ph.56.030194.001501. [DOI] [PubMed] [Google Scholar]
  159. Peterson J. R., Ora A., Van P. N., Helenius A. Transient, lectin-like association of calreticulin with folding intermediates of cellular and viral glycoproteins. Mol Biol Cell. 1995 Sep;6(9):1173–1184. doi: 10.1091/mbc.6.9.1173. [DOI] [PMC free article] [PubMed] [Google Scholar]
  160. Pike S. E., Yao L., Jones K. D., Cherney B., Appella E., Sakaguchi K., Nakhasi H., Teruya-Feldstein J., Wirth P., Gupta G. Vasostatin, a calreticulin fragment, inhibits angiogenesis and suppresses tumor growth. J Exp Med. 1998 Dec 21;188(12):2349–2356. doi: 10.1084/jem.188.12.2349. [DOI] [PMC free article] [PubMed] [Google Scholar]
  161. Pipe S. W., Morris J. A., Shah J., Kaufman R. J. Differential interaction of coagulation factor VIII and factor V with protein chaperones calnexin and calreticulin. J Biol Chem. 1998 Apr 3;273(14):8537–8544. doi: 10.1074/jbc.273.14.8537. [DOI] [PubMed] [Google Scholar]
  162. Plakidou-Dymock S., McGivan J. D. Calreticulin--a stress protein induced in the renal epithelial cell line NBL-1 by amino acid deprivation. Cell Calcium. 1994 Jul;16(1):1–8. doi: 10.1016/s0143-4160(05)80002-8. [DOI] [PubMed] [Google Scholar]
  163. Pozzan T., Rizzuto R., Volpe P., Meldolesi J. Molecular and cellular physiology of intracellular calcium stores. Physiol Rev. 1994 Jul;74(3):595–636. doi: 10.1152/physrev.1994.74.3.595. [DOI] [PubMed] [Google Scholar]
  164. Prasad S. A., Yewdell J. W., Porgador A., Sadasivan B., Cresswell P., Bennink J. R. Calnexin expression does not enhance the generation of MHC class I-peptide complexes. Eur J Immunol. 1998 Mar;28(3):907–913. doi: 10.1002/(SICI)1521-4141(199803)28:03<907::AID-IMMU907>3.0.CO;2-4. [DOI] [PubMed] [Google Scholar]
  165. Ramsamooj P., Notario V., Dritschilo A. Enhanced expression of calreticulin in the nucleus of radioresistant squamous carcinoma cells in response to ionizing radiation. Cancer Res. 1995 Jul 15;55(14):3016–3021. [PubMed] [Google Scholar]
  166. Rao A., Luo C., Hogan P. G. Transcription factors of the NFAT family: regulation and function. Annu Rev Immunol. 1997;15:707–747. doi: 10.1146/annurev.immunol.15.1.707. [DOI] [PubMed] [Google Scholar]
  167. Rodan A. R., Simons J. F., Trombetta E. S., Helenius A. N-linked oligosaccharides are necessary and sufficient for association of glycosylated forms of bovine RNase with calnexin and calreticulin. EMBO J. 1996 Dec 16;15(24):6921–6930. [PMC free article] [PubMed] [Google Scholar]
  168. Roderick H. L., Campbell A. K., Llewellyn D. H. Nuclear localisation of calreticulin in vivo is enhanced by its interaction with glucocorticoid receptors. FEBS Lett. 1997 Mar 24;405(2):181–185. doi: 10.1016/s0014-5793(97)00183-x. [DOI] [PubMed] [Google Scholar]
  169. Rojiani M. V., Finlay B. B., Gray V., Dedhar S. In vitro interaction of a polypeptide homologous to human Ro/SS-A antigen (calreticulin) with a highly conserved amino acid sequence in the cytoplasmic domain of integrin alpha subunits. Biochemistry. 1991 Oct 15;30(41):9859–9866. doi: 10.1021/bi00105a008. [DOI] [PubMed] [Google Scholar]
  170. Rooke K., Briquet-Laugier V., Xia Y. R., Lusis A. J., Doolittle M. H. Mapping of the gene for calreticulin (Calr) to mouse chromosome 8. Mamm Genome. 1997;8(11):870–871. doi: 10.1007/s003359900599. [DOI] [PubMed] [Google Scholar]
  171. Sadasivan B. K., Cariappa A., Waneck G. L., Cresswell P. Assembly, peptide loading, and transport of MHC class I molecules in a calnexin-negative cell line. Cold Spring Harb Symp Quant Biol. 1995;60:267–275. doi: 10.1101/sqb.1995.060.01.031. [DOI] [PubMed] [Google Scholar]
  172. Sadasivan B., Lehner P. J., Ortmann B., Spies T., Cresswell P. Roles for calreticulin and a novel glycoprotein, tapasin, in the interaction of MHC class I molecules with TAP. Immunity. 1996 Aug;5(2):103–114. doi: 10.1016/s1074-7613(00)80487-2. [DOI] [PubMed] [Google Scholar]
  173. Sakanaka C., Weiss J. B., Williams L. T. Bridging of beta-catenin and glycogen synthase kinase-3beta by axin and inhibition of beta-catenin-mediated transcription. Proc Natl Acad Sci U S A. 1998 Mar 17;95(6):3020–3023. doi: 10.1073/pnas.95.6.3020. [DOI] [PMC free article] [PubMed] [Google Scholar]
  174. Scott J. E., Dawson J. R. MHC class I expression and transport in a calnexin-deficient cell line. J Immunol. 1995 Jul 1;155(1):143–148. [PubMed] [Google Scholar]
  175. Sela-Brown A., Russell J., Koszewski N. J., Michalak M., Naveh-Many T., Silver J. Calreticulin inhibits vitamin D's action on the PTH gene in vitro and may prevent vitamin D's effect in vivo in hypocalcemic rats. Mol Endocrinol. 1998 Aug;12(8):1193–1200. doi: 10.1210/mend.12.8.0148. [DOI] [PubMed] [Google Scholar]
  176. Sidrauski C., Chapman R., Walter P. The unfolded protein response: an intracellular signalling pathway with many surprising features. Trends Cell Biol. 1998 Jun;8(6):245–249. doi: 10.1016/s0962-8924(98)01267-7. [DOI] [PubMed] [Google Scholar]
  177. Singh N. K., Atreya C. D., Nakhasi H. L. Identification of calreticulin as a rubella virus RNA binding protein. Proc Natl Acad Sci U S A. 1994 Dec 20;91(26):12770–12774. doi: 10.1073/pnas.91.26.12770. [DOI] [PMC free article] [PubMed] [Google Scholar]
  178. Smith M. J. A C. elegans gene encodes a protein homologous to mammalian calreticulin. DNA Seq. 1992;2(4):235–240. doi: 10.3109/10425179209020808. [DOI] [PubMed] [Google Scholar]
  179. Smith M. J., Koch G. L. Multiple zones in the sequence of calreticulin (CRP55, calregulin, HACBP), a major calcium binding ER/SR protein. EMBO J. 1989 Dec 1;8(12):3581–3586. doi: 10.1002/j.1460-2075.1989.tb08530.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  180. Smith M. J. Nucleotide sequence of a Drosophila melanogaster gene encoding a calreticulin homologue. DNA Seq. 1992;3(4):247–250. doi: 10.3109/10425179209034025. [DOI] [PubMed] [Google Scholar]
  181. Solheim J. C., Harris M. R., Kindle C. S., Hansen T. H. Prominence of beta 2-microglobulin, class I heavy chain conformation, and tapasin in the interactions of class I heavy chain with calreticulin and the transporter associated with antigen processing. J Immunol. 1997 Mar 1;158(5):2236–2241. [PubMed] [Google Scholar]
  182. Sontheimer R. D., Nguyen T. Q., Cheng S. T., Lieu T. S., Capra J. D. The unveiling of calreticulin--a clinically relevant tour of modern cell biology. J Investig Med. 1995 Aug;43(4):362–370. [PubMed] [Google Scholar]
  183. Sorrentino V., Volpe P. Ryanodine receptors: how many, where and why? Trends Pharmacol Sci. 1993 Mar;14(3):98–103. doi: 10.1016/0165-6147(93)90072-r. [DOI] [PubMed] [Google Scholar]
  184. Sousa M., Parodi A. J. The molecular basis for the recognition of misfolded glycoproteins by the UDP-Glc:glycoprotein glucosyltransferase. EMBO J. 1995 Sep 1;14(17):4196–4203. doi: 10.1002/j.1460-2075.1995.tb00093.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  185. Spee P., Neefjes J. TAP-translocated peptides specifically bind proteins in the endoplasmic reticulum, including gp96, protein disulfide isomerase and calreticulin. Eur J Immunol. 1997 Sep;27(9):2441–2449. doi: 10.1002/eji.1830270944. [DOI] [PubMed] [Google Scholar]
  186. Spiro R. G., Zhu Q., Bhoyroo V., Söling H. D. Definition of the lectin-like properties of the molecular chaperone, calreticulin, and demonstration of its copurification with endomannosidase from rat liver Golgi. J Biol Chem. 1996 May 10;271(19):11588–11594. doi: 10.1074/jbc.271.19.11588. [DOI] [PubMed] [Google Scholar]
  187. Srivastava S. P., Davies M. V., Kaufman R. J. Calcium depletion from the endoplasmic reticulum activates the double-stranded RNA-dependent protein kinase (PKR) to inhibit protein synthesis. J Biol Chem. 1995 Jul 14;270(28):16619–16624. doi: 10.1074/jbc.270.28.16619. [DOI] [PubMed] [Google Scholar]
  188. St-Arnaud R., Prud'homme J., Leung-Hagesteijn C., Dedhar S. Constitutive expression of calreticulin in osteoblasts inhibits mineralization. J Cell Biol. 1995 Dec;131(5):1351–1359. doi: 10.1083/jcb.131.5.1351. [DOI] [PMC free article] [PubMed] [Google Scholar]
  189. Stehno-Bittel L., Lückhoff A., Clapham D. E. Calcium release from the nucleus by InsP3 receptor channels. Neuron. 1995 Jan;14(1):163–167. doi: 10.1016/0896-6273(95)90250-3. [DOI] [PubMed] [Google Scholar]
  190. Stendahl O., Krause K. H., Krischer J., Jerström P., Theler J. M., Clark R. A., Carpentier J. L., Lew D. P. Redistribution of intracellular Ca2+ stores during phagocytosis in human neutrophils. Science. 1994 Sep 2;265(5177):1439–1441. doi: 10.1126/science.8073285. [DOI] [PubMed] [Google Scholar]
  191. Subramanian K., Meyer T. Calcium-induced restructuring of nuclear envelope and endoplasmic reticulum calcium stores. Cell. 1997 Jun 13;89(6):963–971. doi: 10.1016/s0092-8674(00)80281-0. [DOI] [PubMed] [Google Scholar]
  192. Sucov H. M. Molecular insights into cardiac development. Annu Rev Physiol. 1998;60:287–308. doi: 10.1146/annurev.physiol.60.1.287. [DOI] [PubMed] [Google Scholar]
  193. Sueyoshi T., McMullen B. A., Marnell L. L., Du Clos T. W., Kisiel W. A new procedure for the separation of protein Z, prothrombin fragment 1.2 and calreticulin from human plasma. Thromb Res. 1991 Sep 1;63(5):569–575. doi: 10.1016/0049-3848(91)90184-x. [DOI] [PubMed] [Google Scholar]
  194. Suh W. K., Mitchell E. K., Yang Y., Peterson P. A., Waneck G. L., Williams D. B. MHC class I molecules form ternary complexes with calnexin and TAP and undergo peptide-regulated interaction with TAP via their extracellular domains. J Exp Med. 1996 Aug 1;184(2):337–348. doi: 10.1084/jem.184.2.337. [DOI] [PMC free article] [PubMed] [Google Scholar]
  195. Sutko J. L., Airey J. A. Ryanodine receptor Ca2+ release channels: does diversity in form equal diversity in function? Physiol Rev. 1996 Oct;76(4):1027–1071. doi: 10.1152/physrev.1996.76.4.1027. [DOI] [PubMed] [Google Scholar]
  196. Svaerke C., Houen G. Chaperone properties of calreticulin. Acta Chem Scand. 1998 Jul;52(7):942–949. [PubMed] [Google Scholar]
  197. Sönnichsen B., Füllekrug J., Nguyen Van P., Diekmann W., Robinson D. G., Mieskes G. Retention and retrieval: both mechanisms cooperate to maintain calreticulin in the endoplasmic reticulum. J Cell Sci. 1994 Oct;107(Pt 10):2705–2717. doi: 10.1242/jcs.107.10.2705. [DOI] [PubMed] [Google Scholar]
  198. Tate C. G., Whiteley E., Betenbaugh M. J. Molecular chaperones stimulate the functional expression of the cocaine-sensitive serotonin transporter. J Biol Chem. 1999 Jun 18;274(25):17551–17558. doi: 10.1074/jbc.274.25.17551. [DOI] [PubMed] [Google Scholar]
  199. Tatu U., Helenius A. Interactions between newly synthesized glycoproteins, calnexin and a network of resident chaperones in the endoplasmic reticulum. J Cell Biol. 1997 Feb 10;136(3):555–565. doi: 10.1083/jcb.136.3.555. [DOI] [PMC free article] [PubMed] [Google Scholar]
  200. Tharin S., Hamel P. A., Conway E. M., Michalak M., Opas M. Regulation of calcium binding proteins calreticulin and calsequestrin during differentiation in the myogenic cell line L6. J Cell Physiol. 1996 Mar;166(3):547–560. doi: 10.1002/(SICI)1097-4652(199603)166:3<547::AID-JCP9>3.0.CO;2-P. [DOI] [PubMed] [Google Scholar]
  201. Tjoelker L. W., Seyfried C. E., Eddy R. L., Jr, Byers M. G., Shows T. B., Calderon J., Schreiber R. B., Gray P. W. Human, mouse, and rat calnexin cDNA cloning: identification of potential calcium binding motifs and gene localization to human chromosome 5. Biochemistry. 1994 Mar 22;33(11):3229–3236. doi: 10.1021/bi00177a013. [DOI] [PubMed] [Google Scholar]
  202. Urade R., Takenaka Y., Kito M. Protein degradation by ERp72 from rat and mouse liver endoplasmic reticulum. J Biol Chem. 1993 Oct 15;268(29):22004–22009. [PubMed] [Google Scholar]
  203. Van Delden C., Favre C., Spät A., Cerny E., Krause K. H., Lew D. P. Purification of an inositol 1,4,5-trisphosphate-binding calreticulin-containing intracellular compartment of HL-60 cells. Biochem J. 1992 Feb 1;281(Pt 3):651–656. doi: 10.1042/bj2810651. [DOI] [PMC free article] [PubMed] [Google Scholar]
  204. Van Leeuwen J. E., Kearse K. P. The related molecular chaperones calnexin and calreticulin differentially associate with nascent T cell antigen receptor proteins within the endoplasmic reticulum. J Biol Chem. 1996 Oct 11;271(41):25345–25349. doi: 10.1074/jbc.271.41.25345. [DOI] [PubMed] [Google Scholar]
  205. Vanlingen S., Parys J. B., Missiaen L., De Smedt H., Wuytack F., Casteels R. Distribution of inositol 1,4,5-trisphosphate receptor isoforms, SERCA isoforms and Ca2+ binding proteins in RBL-2H3 rat basophilic leukemia cells. Cell Calcium. 1997 Dec;22(6):475–486. doi: 10.1016/s0143-4160(97)90075-0. [DOI] [PubMed] [Google Scholar]
  206. Vassilakos A., Michalak M., Lehrman M. A., Williams D. B. Oligosaccharide binding characteristics of the molecular chaperones calnexin and calreticulin. Biochemistry. 1998 Mar 10;37(10):3480–3490. doi: 10.1021/bi972465g. [DOI] [PubMed] [Google Scholar]
  207. Veijola J., Pettersson R. F. Transient association of calnexin and calreticulin with newly synthesized G1 and G2 glycoproteins of uukuniemi virus (family Bunyaviridae). J Virol. 1999 Jul;73(7):6123–6127. doi: 10.1128/jvi.73.7.6123-6127.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  208. Verboomen H., Wuytack F., Van den Bosch L., Mertens L., Casteels R. The functional importance of the extreme C-terminal tail in the gene 2 organellar Ca(2+)-transport ATPase (SERCA2a/b). Biochem J. 1994 Nov 1;303(Pt 3):979–984. doi: 10.1042/bj3030979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  209. Villa A., Podini P., Clegg D. O., Pozzan T., Meldolesi J. Intracellular Ca2+ stores in chicken Purkinje neurons: differential distribution of the low affinity-high capacity Ca2+ binding protein, calsequestrin, of Ca2+ ATPase and of the ER lumenal protein, Bip. J Cell Biol. 1991 May;113(4):779–791. doi: 10.1083/jcb.113.4.779. [DOI] [PMC free article] [PubMed] [Google Scholar]
  210. Wada I., Imai S., Kai M., Sakane F., Kanoh H. Chaperone function of calreticulin when expressed in the endoplasmic reticulum as the membrane-anchored and soluble forms. J Biol Chem. 1995 Sep 1;270(35):20298–20304. doi: 10.1074/jbc.270.35.20298. [DOI] [PubMed] [Google Scholar]
  211. Wada I., Kai M., Imai S., Sakane F., Kanoh H. Promotion of transferrin folding by cyclic interactions with calnexin and calreticulin. EMBO J. 1997 Sep 1;16(17):5420–5432. doi: 10.1093/emboj/16.17.5420. [DOI] [PMC free article] [PubMed] [Google Scholar]
  212. Wang Z., Tufts R., Haleem R., Cai X. Genes regulated by androgen in the rat ventral prostate. Proc Natl Acad Sci U S A. 1997 Nov 25;94(24):12999–13004. doi: 10.1073/pnas.94.24.12999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  213. Ware F. E., Vassilakos A., Peterson P. A., Jackson M. R., Lehrman M. A., Williams D. B. The molecular chaperone calnexin binds Glc1Man9GlcNAc2 oligosaccharide as an initial step in recognizing unfolded glycoproteins. J Biol Chem. 1995 Mar 3;270(9):4697–4704. doi: 10.1074/jbc.270.9.4697. [DOI] [PubMed] [Google Scholar]
  214. Waser M., Mesaeli N., Spencer C., Michalak M. Regulation of calreticulin gene expression by calcium. J Cell Biol. 1997 Aug 11;138(3):547–557. doi: 10.1083/jcb.138.3.547. [DOI] [PMC free article] [PubMed] [Google Scholar]
  215. Watanabe D., Yamada K., Nishina Y., Tajima Y., Koshimizu U., Nagata A., Nishimune Y. Molecular cloning of a novel Ca(2+)-binding protein (calmegin) specifically expressed during male meiotic germ cell development. J Biol Chem. 1994 Mar 11;269(10):7744–7749. [PubMed] [Google Scholar]
  216. Wheeler D. G., Horsford J., Michalak M., White J. H., Hendy G. N. Calreticulin inhibits vitamin D3 signal transduction. Nucleic Acids Res. 1995 Aug 25;23(16):3268–3274. doi: 10.1093/nar/23.16.3268. [DOI] [PMC free article] [PubMed] [Google Scholar]
  217. White T. K., Zhu Q., Tanzer M. L. Cell surface calreticulin is a putative mannoside lectin which triggers mouse melanoma cell spreading. J Biol Chem. 1995 Jul 7;270(27):15926–15929. doi: 10.1074/jbc.270.27.15926. [DOI] [PubMed] [Google Scholar]
  218. Williams D. B. The Merck Frosst Award Lecture 1994/La conference Merck Frosst 1994. Calnexin: a molecular chaperone with a taste for carbohydrate. Biochem Cell Biol. 1995 Mar-Apr;73(3-4):123–132. doi: 10.1139/o95-015. [DOI] [PubMed] [Google Scholar]
  219. Williams M. J., Hughes P. E., O'Toole T. E., Ginsberg M. H. The inner world of cell adhesion: integrin cytoplasmic domains. Trends Cell Biol. 1994 Apr;4(4):109–112. doi: 10.1016/0962-8924(94)90059-0. [DOI] [PubMed] [Google Scholar]
  220. Winrow C. J., Miyata K. S., Marcus S. L., Burns K., Michalak M., Capone J. P., Rachubinski R. A. Calreticulin modulates the in vitro DNA binding but not the in vivo transcriptional activation by peroxisome proliferator-activated receptor/retinoid X receptor heterodimers. Mol Cell Endocrinol. 1995 Jun;111(2):175–179. doi: 10.1016/0303-7207(95)03563-m. [DOI] [PubMed] [Google Scholar]
  221. Wu Y., Pun C., Hozumi N. Roles of calnexin and Ig-alpha beta interactions with membrane Igs in the surface expression of the B cell antigen receptor of the IgM and IgD classes. J Immunol. 1997 Mar 15;158(6):2762–2770. [PubMed] [Google Scholar]
  222. York I. A., Rock K. L. Antigen processing and presentation by the class I major histocompatibility complex. Annu Rev Immunol. 1996;14:369–396. doi: 10.1146/annurev.immunol.14.1.369. [DOI] [PubMed] [Google Scholar]
  223. Zapun A., Darby N. J., Tessier D. C., Michalak M., Bergeron J. J., Thomas D. Y. Enhanced catalysis of ribonuclease B folding by the interaction of calnexin or calreticulin with ERp57. J Biol Chem. 1998 Mar 13;273(11):6009–6012. doi: 10.1074/jbc.273.11.6009. [DOI] [PubMed] [Google Scholar]
  224. Zhang J. X., Braakman I., Matlack K. E., Helenius A. Quality control in the secretory pathway: the role of calreticulin, calnexin and BiP in the retention of glycoproteins with C-terminal truncations. Mol Biol Cell. 1997 Oct;8(10):1943–1954. doi: 10.1091/mbc.8.10.1943. [DOI] [PMC free article] [PubMed] [Google Scholar]
  225. Zhang Q., Salter R. D. Distinct patterns of folding and interactions with calnexin and calreticulin in human class I MHC proteins with altered N-glycosylation. J Immunol. 1998 Jan 15;160(2):831–837. [PubMed] [Google Scholar]
  226. Zhu J. Ultraviolet B irradiation and cytomegalovirus infection synergize to induce the cell surface expression of 52-kD/Ro antigen. Clin Exp Immunol. 1996 Jan;103(1):47–53. doi: 10.1046/j.1365-2249.1996.00912.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  227. Zhu N., Pewitt E. B., Cai X., Cohn E. B., Lang S., Chen R., Wang Z. Calreticulin: an intracellular Ca++-binding protein abundantly expressed and regulated by androgen in prostatic epithelial cells. Endocrinology. 1998 Oct;139(10):4337–4344. doi: 10.1210/endo.139.10.6242. [DOI] [PubMed] [Google Scholar]
  228. Zhu N., Wang Z. Calreticulin expression is associated with androgen regulation of the sensitivity to calcium ionophore-induced apoptosis in LNCaP prostate cancer cells. Cancer Res. 1999 Apr 15;59(8):1896–1902. [PubMed] [Google Scholar]
  229. van Leeuwen J. E., Kearse K. P. Calnexin associates exclusively with individual CD3 delta and T cell antigen receptor (TCR) alpha proteins containing incompletely trimmed glycans that are not assembled into multisubunit TCR complexes. J Biol Chem. 1996 Apr 19;271(16):9660–9665. doi: 10.1074/jbc.271.16.9660. [DOI] [PubMed] [Google Scholar]
  230. van de Put F. H., Elliott A. C. The endoplasmic reticulum can act as a functional Ca2+ store in all subcellular regions of the pancreatic acinar cell. J Biol Chem. 1997 Oct 31;272(44):27764–27770. doi: 10.1074/jbc.272.44.27764. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES