Abstract
We report the identification of a novel mouse protein closely related to the family of mitochondrial uncoupling proteins and the oxoglutarate carrier. The cDNA encodes a protein of 287 amino acids that shares all the hallmark features of the mitochondrial transporter superfamily, including six predicted transmembrane domains. It is nearly identical to the sequence recently reported for the rat mitochondrial dicarboxylate carrier (DIC). We find that murine DIC (mDIC) is expressed at very high levels in mitochondria of white adipocytes and is strongly induced in the course of 3T3-L1 adipogenesis. To determine the consequences of the presence of mDIC on the mitochondrial membrane potential, we transiently expressed mDIC in 293-T cells. Overexpression of mDIC leads to significant mitochondrial hyperpolarization. In addition, exposure to cold down-regulates mDIC levels in vivo. In contrast, free fatty acids lead to an up-regulation of mDIC protein in 3T3-L1 adipocytes. This is the first report demonstrating preferential expression in white adipose tissue of any mitochondrial transporter. However, it remains to be determined which metabolic pathways most critically depend on high level expression of mDIC in the adipocyte.
Full Text
The Full Text of this article is available as a PDF (298.9 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Antras-Ferry J., Franckhauser S., Robin D., Robin P., Granner D. K., Forest C. Expression of the phosphoenolpyruvate carboxykinase gene in 3T3-F442A adipose cells: effects of retinoic acid and differentiation. Biochem J. 1994 Sep 15;302(Pt 3):943–948. doi: 10.1042/bj3020943. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Antras-Ferry J., Le Bigot G., Robin P., Robin D., Forest C. Stimulation of phosphoenolpyruvate carboxykinase gene expression by fatty acids. Biochem Biophys Res Commun. 1994 Aug 30;203(1):385–391. doi: 10.1006/bbrc.1994.2194. [DOI] [PubMed] [Google Scholar]
- Baldini G., Hohl T., Lin H. Y., Lodish H. F. Cloning of a Rab3 isotype predominantly expressed in adipocytes. Proc Natl Acad Sci U S A. 1992 Jun 1;89(11):5049–5052. doi: 10.1073/pnas.89.11.5049. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Baldini G., Hohman R., Charron M. J., Lodish H. F. Insulin and nonhydrolyzable GTP analogs induce translocation of GLUT 4 to the plasma membrane in alpha-toxin-permeabilized rat adipose cells. J Biol Chem. 1991 Mar 5;266(7):4037–4040. [PubMed] [Google Scholar]
- Cooke D. W., Lane M. D. A sequence element in the GLUT4 gene that mediates repression by insulin. J Biol Chem. 1998 Mar 13;273(11):6210–6217. doi: 10.1074/jbc.273.11.6210. [DOI] [PubMed] [Google Scholar]
- Crompton M., Palmieri F., Capano M., Quagliariello E. The transport of sulphate and sulphite in rat liver mitochondria. Biochem J. 1974 Jul;142(1):127–137. doi: 10.1042/bj1420127. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fiermonte G., Palmieri L., Dolce V., Lasorsa F. M., Palmieri F., Runswick M. J., Walker J. E. The sequence, bacterial expression, and functional reconstitution of the rat mitochondrial dicarboxylate transporter cloned via distant homologs in yeast and Caenorhabditis elegans. J Biol Chem. 1998 Sep 18;273(38):24754–24759. doi: 10.1074/jbc.273.38.24754. [DOI] [PubMed] [Google Scholar]
- Jacobsson A., Stadler U., Glotzer M. A., Kozak L. P. Mitochondrial uncoupling protein from mouse brown fat. Molecular cloning, genetic mapping, and mRNA expression. J Biol Chem. 1985 Dec 25;260(30):16250–16254. [PubMed] [Google Scholar]
- Kolarov J., Subík J., Kovac L. Oxidative phosphorylation in yeast. 8. Osmotic and permeability properties of mitochondria isolated from wild-type yeast and from a respiration-deficient mutant. Biochim Biophys Acta. 1972 Jun 23;267(3):457–464. doi: 10.1016/0005-2728(72)90173-9. [DOI] [PubMed] [Google Scholar]
- Miroux B., Frossard V., Raimbault S., Ricquier D., Bouillaud F. The topology of the brown adipose tissue mitochondrial uncoupling protein determined with antibodies against its antigenic sites revealed by a library of fusion proteins. EMBO J. 1993 Oct;12(10):3739–3745. doi: 10.1002/j.1460-2075.1993.tb06051.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moreno M., Puigserver P., Llull J., Gianotti M., Lanni A., Goglia F., Palou A. Cold exposure induces different uncoupling-protein thermogenin masking/unmasking processes in brown adipose tissue depending on mitochondrial subtypes. Biochem J. 1994 Jun 1;300(Pt 2):463–468. doi: 10.1042/bj3000463. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Palmieri F., Bisaccia F., Capobianco L., Dolce V., Fiermonte G., Iacobazzi V., Zara V. Transmembrane topology, genes, and biogenesis of the mitochondrial phosphate and oxoglutarate carriers. J Bioenerg Biomembr. 1993 Oct;25(5):493–501. doi: 10.1007/BF01108406. [DOI] [PubMed] [Google Scholar]
- Palmieri F., Prezioso G., Quagliariello E., Klingenberg M. Kinetic study of the dicarboxylate carrier in rat liver mitochondria. Eur J Biochem. 1971 Sep 13;22(1):66–74. doi: 10.1111/j.1432-1033.1971.tb01515.x. [DOI] [PubMed] [Google Scholar]
- Perkins M., Haslam J. M., Linnane A. W. Biogenesis of mitochondria. The effects of physiological and genetic manipulation of Saccharomyces cerevisiae on the mitochondrial transport systems for tricarboxylate-cycle anions. Biochem J. 1973 Aug;134(4):923–934. doi: 10.1042/bj1340923. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pfanner N., Neupert W. Transport of proteins into mitochondria: a potassium diffusion potential is able to drive the import of ADP/ATP carrier. EMBO J. 1985 Nov;4(11):2819–2825. doi: 10.1002/j.1460-2075.1985.tb04009.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Reshef L., Hanson R. W., Ballard F. J. A possible physiological role for glyceroneogenesis in rat adipose tissue. J Biol Chem. 1970 Nov 25;245(22):5979–5984. [PubMed] [Google Scholar]
- Robinson B. H., Williams G. R. The sensitivity of dicarboxylate anion exchange reactions o transport inhibitors in rat-liver mitochondria. Biochim Biophys Acta. 1970 Aug 4;216(1):63–70. doi: 10.1016/0005-2728(70)90159-3. [DOI] [PubMed] [Google Scholar]
- Scherer P. E., Lisanti M. P., Baldini G., Sargiacomo M., Mastick C. C., Lodish H. F. Induction of caveolin during adipogenesis and association of GLUT4 with caveolin-rich vesicles. J Cell Biol. 1994 Dec;127(5):1233–1243. doi: 10.1083/jcb.127.5.1233. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Scherer P. E., Manning-Krieg U. C., Jenö P., Schatz G., Horst M. Identification of a 45-kDa protein at the protein import site of the yeast mitochondrial inner membrane. Proc Natl Acad Sci U S A. 1992 Dec 15;89(24):11930–11934. doi: 10.1073/pnas.89.24.11930. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Scherer P. E., Williams S., Fogliano M., Baldini G., Lodish H. F. A novel serum protein similar to C1q, produced exclusively in adipocytes. J Biol Chem. 1995 Nov 10;270(45):26746–26749. doi: 10.1074/jbc.270.45.26746. [DOI] [PubMed] [Google Scholar]
- Sivitz W. I., Fink B. D., Donohoue P. A. Fasting and leptin modulate adipose and muscle uncoupling protein: divergent effects between messenger ribonucleic acid and protein expression. Endocrinology. 1999 Apr;140(4):1511–1519. doi: 10.1210/endo.140.4.6668. [DOI] [PubMed] [Google Scholar]
- Smith O. L. Insulin response in rats acutely exposed to cold. Can J Physiol Pharmacol. 1984 Aug;62(8):924–927. doi: 10.1139/y84-154. [DOI] [PubMed] [Google Scholar]
- Student A. K., Hsu R. Y., Lane M. D. Induction of fatty acid synthetase synthesis in differentiating 3T3-L1 preadipocytes. J Biol Chem. 1980 May 25;255(10):4745–4750. [PubMed] [Google Scholar]
- Walker J. E., Runswick M. J. The mitochondrial transport protein superfamily. J Bioenerg Biomembr. 1993 Oct;25(5):435–446. doi: 10.1007/BF01108401. [DOI] [PubMed] [Google Scholar]
- Zhang J., Xia W. L., Ahmad F. Regulation of pyruvate carboxylase in 3T3-L1 cells. Biochem J. 1995 Feb 15;306(Pt 1):205–210. doi: 10.1042/bj3060205. [DOI] [PMC free article] [PubMed] [Google Scholar]