Abstract
To investigate the genetic identities of the mucins secreted in cystic fibrosis (CF) airways, sputum was collected from five individuals. Samples were separated into gel and sol phases by high-speed centrifugation and the gel phase was extracted in 6 M guanidinium chloride. The 'insoluble' residue remaining after extraction of the gel phase was brought into solution by reduction/alkylation. Density-gradient centrifugation in CsCl revealed polydisperse distributions of sialic acid-containing mucins in the gel phase, insoluble residue and sol phase fractions and the degree of variation between the different individuals was low. Antibodies recognizing MUC5AC and MUC5B identified these mucins in each of the fractions. MUC2, however, was present only as a component of the insoluble residue from the gel which accounted for less than 4% by mass of the total mucins. MUC5B and MUC5AC from the gel phase were large oligomeric species composed of disulphide-bond linked subunits and MUC5B was present as two populations with different charge densities which are likely to correspond to MUC5B 'glycoforms'. The sol phase contained, in addition to MUC5AC and MUC5B, mainly smaller mucins which did not react with the antisera and which were probably degraded. MUC5AC appeared to be enriched in the sol, suggesting that this mucin may be more susceptible to proteolytic degradation than MUC5B. The mucins present in sputum remained broadly similar during acute exacerbation and following antibiotic treatment, although the relative amount of an acidic MUC5B glycoform was decreased during infection.
Full Text
The Full Text of this article is available as a PDF (232.3 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Audie J. P., Janin A., Porchet N., Copin M. C., Gosselin B., Aubert J. P. Expression of human mucin genes in respiratory, digestive, and reproductive tracts ascertained by in situ hybridization. J Histochem Cytochem. 1993 Oct;41(10):1479–1485. doi: 10.1177/41.10.8245407. [DOI] [PubMed] [Google Scholar]
- Aust M. R., Madsen C. S., Jennings A., Kasperbauer J. L., Gendler S. J. Mucin mRNA expression in normal and vasomotor inferior turbinates. Am J Rhinol. 1997 Jul-Aug;11(4):293–302. doi: 10.2500/105065897781446685. [DOI] [PubMed] [Google Scholar]
- Carlstedt I., Herrmann A., Hovenberg H., Lindell G., Nordman H., Wickström C., Davies J. R. 'Soluble' and 'insoluble' mucins--identification of distinct populations. Biochem Soc Trans. 1995 Nov;23(4):845–851. doi: 10.1042/bst0230845. [DOI] [PubMed] [Google Scholar]
- Carlstedt I., Lindgren H., Sheehan J. K., Ulmsten U., Wingerup L. Isolation and characterization of human cervical-mucus glycoproteins. Biochem J. 1983 Apr 1;211(1):13–22. doi: 10.1042/bj2110013. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cheng P. W., Boat T. F., Cranfill K., Yankaskas J. R., Boucher R. C. Increased sulfation of glycoconjugates by cultured nasal epithelial cells from patients with cystic fibrosis. J Clin Invest. 1989 Jul;84(1):68–72. doi: 10.1172/JCI114171. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cressman V. L., Hicks E. M., Funkhouser W. K., Backlund D. C., Koller B. H. The relationship of chronic mucin secretion to airway disease in normal and CFTR-deficient mice. Am J Respir Cell Mol Biol. 1998 Dec;19(6):853–866. doi: 10.1165/ajrcmb.19.6.3194. [DOI] [PubMed] [Google Scholar]
- Davies J. R., Hovenberg H. W., Lindén C. J., Howard R., Richardson P. S., Sheehan J. K., Carlstedt I. Mucins in airway secretions from healthy and chronic bronchitic subjects. Biochem J. 1996 Jan 15;313(Pt 2):431–439. doi: 10.1042/bj3130431. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Devine P. L. A sensitive microplate assay for glycoproteins that utilizes an immunological digoxigenin-based detection system. Biotechniques. 1992 Feb;12(2):160–162. [PubMed] [Google Scholar]
- Dohrman A., Miyata S., Gallup M., Li J. D., Chapelin C., Coste A., Escudier E., Nadel J., Basbaum C. Mucin gene (MUC 2 and MUC 5AC) upregulation by Gram-positive and Gram-negative bacteria. Biochim Biophys Acta. 1998 Apr 28;1406(3):251–259. doi: 10.1016/s0925-4439(98)00010-6. [DOI] [PubMed] [Google Scholar]
- Gendler S. J., Spicer A. P. Epithelial mucin genes. Annu Rev Physiol. 1995;57:607–634. doi: 10.1146/annurev.ph.57.030195.003135. [DOI] [PubMed] [Google Scholar]
- Gerard C., Eddy R. L., Jr, Shows T. B. The core polypeptide of cystic fibrosis tracheal mucin contains a tandem repeat structure. Evidence for a common mucin in airway and gastrointestinal tissue. J Clin Invest. 1990 Dec;86(6):1921–1927. doi: 10.1172/JCI114925. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grubb B. R., Boucher R. C. Pathophysiology of gene-targeted mouse models for cystic fibrosis. Physiol Rev. 1999 Jan;79(1 Suppl):S193–S214. doi: 10.1152/physrev.1999.79.1.S193. [DOI] [PubMed] [Google Scholar]
- Gupta R., Jentoft N. The structure of tracheobronchial mucins from cystic fibrosis and control patients. J Biol Chem. 1992 Feb 15;267(5):3160–3167. [PubMed] [Google Scholar]
- Herrmann A., Davies J. R., Lindell G., Mårtensson S., Packer N. H., Swallow D. M., Carlstedt I. Studies on the "insoluble" glycoprotein complex from human colon. Identification of reduction-insensitive MUC2 oligomers and C-terminal cleavage. J Biol Chem. 1999 May 28;274(22):15828–15836. doi: 10.1074/jbc.274.22.15828. [DOI] [PubMed] [Google Scholar]
- Hovenberg H. W., Davies J. R., Carlstedt I. Different mucins are produced by the surface epithelium and the submucosa in human trachea: identification of MUC5AC as a major mucin from the goblet cells. Biochem J. 1996 Aug 15;318(Pt 1):319–324. doi: 10.1042/bj3180319. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hovenberg H. W., Davies J. R., Herrmann A., Lindén C. J., Carlstedt I. MUC5AC, but not MUC2, is a prominent mucin in respiratory secretions. Glycoconj J. 1996 Oct;13(5):839–847. doi: 10.1007/BF00702348. [DOI] [PubMed] [Google Scholar]
- Jany B. H., Gallup M. W., Yan P. S., Gum J. R., Kim Y. S., Basbaum C. B. Human bronchus and intestine express the same mucin gene. J Clin Invest. 1991 Jan;87(1):77–82. doi: 10.1172/JCI115004. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Li D., Wang D., Majumdar S., Jany B., Durham S. R., Cottrell J., Caplen N., Geddes D. M., Alton E. W., Jeffery P. K. Localization and up-regulation of mucin (MUC2) gene expression in human nasal biopsies of patients with cystic fibrosis. J Pathol. 1997 Mar;181(3):305–310. doi: 10.1002/(SICI)1096-9896(199703)181:3<305::AID-PATH774>3.0.CO;2-D. [DOI] [PubMed] [Google Scholar]
- Li J. D., Dohrman A. F., Gallup M., Miyata S., Gum J. R., Kim Y. S., Nadel J. A., Prince A., Basbaum C. B. Transcriptional activation of mucin by Pseudomonas aeruginosa lipopolysaccharide in the pathogenesis of cystic fibrosis lung disease. Proc Natl Acad Sci U S A. 1997 Feb 4;94(3):967–972. doi: 10.1073/pnas.94.3.967. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Li J. D., Feng W., Gallup M., Kim J. H., Gum J., Kim Y., Basbaum C. Activation of NF-kappaB via a Src-dependent Ras-MAPK-pp90rsk pathway is required for Pseudomonas aeruginosa-induced mucin overproduction in epithelial cells. Proc Natl Acad Sci U S A. 1998 May 12;95(10):5718–5723. doi: 10.1073/pnas.95.10.5718. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Parmley R. R., Gendler S. J. Cystic fibrosis mice lacking Muc1 have reduced amounts of intestinal mucus. J Clin Invest. 1998 Nov 15;102(10):1798–1806. doi: 10.1172/JCI3820. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Riordan J. R. The cystic fibrosis transmembrane conductance regulator. Annu Rev Physiol. 1993;55:609–630. doi: 10.1146/annurev.ph.55.030193.003141. [DOI] [PubMed] [Google Scholar]
- Rose M. C., Brown C. F., Jacoby J. Z., 3rd, Lynn W. S., Kaufman B. Biochemical properties of tracheobronchial mucins from cystic fibrosis and non-cystic fibrosis individuals. Pediatr Res. 1987 Nov;22(5):545–551. doi: 10.1203/00006450-198711000-00015. [DOI] [PubMed] [Google Scholar]
- Sharma P., Dudus L., Nielsen P. A., Clausen H., Yankaskas J. R., Hollingsworth M. A., Engelhardt J. F. MUC5B and MUC7 are differentially expressed in mucous and serous cells of submucosal glands in human bronchial airways. Am J Respir Cell Mol Biol. 1998 Jul;19(1):30–37. doi: 10.1165/ajrcmb.19.1.3054. [DOI] [PubMed] [Google Scholar]
- Sheehan J. K., Carlstedt I. Size heterogeneity of human cervical mucus glycoproteins. Studies performed with rate-zonal centrifugation and laser light-scattering. Biochem J. 1987 Aug 1;245(3):757–762. doi: 10.1042/bj2450757. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Snouwaert J. N., Brigman K. K., Latour A. M., Iraj E., Schwab U., Gilmour M. I., Koller B. H. A murine model of cystic fibrosis. Am J Respir Crit Care Med. 1995 Mar;151(3 Pt 2):S59–S64. doi: 10.1164/ajrccm/151.3_Pt_2.S59. [DOI] [PubMed] [Google Scholar]
- Svitacheva N., Hovenberg H. W., Davies J. R. Biosynthesis of mucins in bovine trachea: identification of the major radiolabelled species. Biochem J. 1998 Jul 15;333(Pt 2):449–456. doi: 10.1042/bj3330449. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thornton D. J., Carlstedt I., Howard M., Devine P. L., Price M. R., Sheehan J. K. Respiratory mucins: identification of core proteins and glycoforms. Biochem J. 1996 Jun 15;316(Pt 3):967–975. doi: 10.1042/bj3160967. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thornton D. J., Davies J. R., Kraayenbrink M., Richardson P. S., Sheehan J. K., Carlstedt I. Mucus glycoproteins from 'normal' human tracheobronchial secretion. Biochem J. 1990 Jan 1;265(1):179–186. doi: 10.1042/bj2650179. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thornton D. J., Howard M., Khan N., Sheehan J. K. Identification of two glycoforms of the MUC5B mucin in human respiratory mucus. Evidence for a cysteine-rich sequence repeated within the molecule. J Biol Chem. 1997 Apr 4;272(14):9561–9566. doi: 10.1074/jbc.272.14.9561. [DOI] [PubMed] [Google Scholar]
- Thornton D. J., Sheehan J. K., Carlstedt I. Heterogeneity of mucus glycoproteins from cystic fibrotic sputum. Are there different families of mucins? Biochem J. 1991 Jun 15;276(Pt 3):677–682. doi: 10.1042/bj2760677. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thornton D. J., Sheehan J. K., Lindgren H., Carlstedt I. Mucus glycoproteins from cystic fibrotic sputum. Macromolecular properties and structural 'architecture'. Biochem J. 1991 Jun 15;276(Pt 3):667–675. doi: 10.1042/bj2760667. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Voynow J. A., Selby D. M., Rose M. C. Mucin gene expression (MUC1, MUC2, and MUC5/5AC) in nasal epithelial cells of cystic fibrosis, allergic rhinitis, and normal individuals. Lung. 1998;176(5):345–354. doi: 10.1007/pl00007616. [DOI] [PubMed] [Google Scholar]
- Wickström C., Davies J. R., Eriksen G. V., Veerman E. C., Carlstedt I. MUC5B is a major gel-forming, oligomeric mucin from human salivary gland, respiratory tract and endocervix: identification of glycoforms and C-terminal cleavage. Biochem J. 1998 Sep 15;334(Pt 3):685–693. doi: 10.1042/bj3340685. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhang Y., Doranz B., Yankaskas J. R., Engelhardt J. F. Genotypic analysis of respiratory mucous sulfation defects in cystic fibrosis. J Clin Invest. 1995 Dec;96(6):2997–3004. doi: 10.1172/JCI118372. [DOI] [PMC free article] [PubMed] [Google Scholar]