Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1999 Dec 1;344(Pt 2):349–358. doi: 10.1042/0264-6021:3440349

alpha5 subunit in Trypanosoma brucei proteasome can self-assemble to form a cylinder of four stacked heptamer rings.

Y Yao 1, C R Toth 1, L Huang 1, M L Wong 1, P Dias 1, A L Burlingame 1, P Coffino 1, C C Wang 1
PMCID: PMC1220650  PMID: 10567215

Abstract

The proteasomes have a central role in catalysing protein degradation among both prokaryotes and eukaryotes. The 20 S proteasome constitutes their catalytic core. In studying the structure of Trypanosoma brucei 20 S proteasomes, we isolated by two-dimensional (2D) gel electrophoresis a 27 kDa subunit protein with an estimated pI of 4.7 and subjected it to mass spectrometric analysis. A tryptic peptide sequence from the protein was found identical with that of the rat alpha5 subunit. With the use of antiserum against T. brucei 20 S proteasomes to screen a T. b. rhodesiense lambda expression cDNA library, we obtained a cDNA clone encoding a full-length protein of 246 amino acid residues with a calculated molecular mass of 27174 Da and a pI of 4.71. It bears 50. 0% and 46.3% sequence identity with rat and yeast proteasome subunit alpha5 respectively, and matches all the peptide sequences derived from MS of the 2D gel-purified protein. The protein is thus designated the alpha5 subunit of T. brucei 20 S proteasome (TbPSA5). The recombinant protein, expressed in plasmid-transformed Escherichia coli, was found in a 27 kDa monomer form as well as polymerized forms with estimated molecular masses ranging from 190 to 800 kDa. Under the electron microscope, the most highly polymerized forms bear the appearance of cylinders of four-stacked heptamer rings with an estimated outer diameter of 14.5 nm and a length of 18 nm, which were immunoprecipitable by anti-(T. brucei 20 S proteasome) antiserum. In view of the documented self-assembly of the archaeon proteasome alpha subunit into double heptamer rings and the spontaneous assembly of the two alpha subunits from the 20 S proteasome of Rhodococcus erythropolis, the self-assembly of the T. brucei alpha subunit might reflect a common feature of proteasome biogenesis shared by prokaryotes and primitive eukaryotes such as the trypanosomes but apparently lost among the higher forms of eukaryote such as the yeast and the mammals.

Full Text

The Full Text of this article is available as a PDF (374.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aki M., Shimbara N., Takashina M., Akiyama K., Kagawa S., Tamura T., Tanahashi N., Yoshimura T., Tanaka K., Ichihara A. Interferon-gamma induces different subunit organizations and functional diversity of proteasomes. J Biochem. 1994 Feb;115(2):257–269. doi: 10.1093/oxfordjournals.jbchem.a124327. [DOI] [PubMed] [Google Scholar]
  2. Baumeister W., Walz J., Zühl F., Seemüller E. The proteasome: paradigm of a self-compartmentalizing protease. Cell. 1998 Feb 6;92(3):367–380. doi: 10.1016/s0092-8674(00)80929-0. [DOI] [PubMed] [Google Scholar]
  3. Chen P., Hochstrasser M. Biogenesis, structure and function of the yeast 20S proteasome. EMBO J. 1995 Jun 1;14(11):2620–2630. doi: 10.1002/j.1460-2075.1995.tb07260.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Ciechanover A., Schwartz A. L. The ubiquitin-proteasome pathway: the complexity and myriad functions of proteins death. Proc Natl Acad Sci U S A. 1998 Mar 17;95(6):2727–2730. doi: 10.1073/pnas.95.6.2727. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Ciechanover A. The ubiquitin-mediated proteolytic pathway: mechanisms of action and cellular physiology. Biol Chem Hoppe Seyler. 1994 Sep;375(9):565–581. doi: 10.1515/bchm3.1994.375.9.565. [DOI] [PubMed] [Google Scholar]
  6. Coux O., Tanaka K., Goldberg A. L. Structure and functions of the 20S and 26S proteasomes. Annu Rev Biochem. 1996;65:801–847. doi: 10.1146/annurev.bi.65.070196.004101. [DOI] [PubMed] [Google Scholar]
  7. Craig S. P., 3rd, Yuan L., Kuntz D. A., McKerrow J. H., Wang C. C. High level expression in Escherichia coli of soluble, enzymatically active schistosomal hypoxanthine/guanine phosphoribosyltransferase and trypanosomal ornithine decarboxylase. Proc Natl Acad Sci U S A. 1991 Mar 15;88(6):2500–2504. doi: 10.1073/pnas.88.6.2500. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Dahlmann B., Kopp F., Kuehn L., Niedel B., Pfeifer G., Hegerl R., Baumeister W. The multicatalytic proteinase (prosome) is ubiquitous from eukaryotes to archaebacteria. FEBS Lett. 1989 Jul 17;251(1-2):125–131. doi: 10.1016/0014-5793(89)81441-3. [DOI] [PubMed] [Google Scholar]
  9. DeMartino G. N., Orth K., McCullough M. L., Lee L. W., Munn T. Z., Moomaw C. R., Dawson P. A., Slaughter C. A. The primary structures of four subunits of the human, high-molecular-weight proteinase, macropain (proteasome), are distinct but homologous. Biochim Biophys Acta. 1991 Aug 9;1079(1):29–38. doi: 10.1016/0167-4838(91)90020-z. [DOI] [PubMed] [Google Scholar]
  10. Donelson J. E. Genome research and evolution in trypanosomes. Curr Opin Genet Dev. 1996 Dec;6(6):699–703. doi: 10.1016/s0959-437x(96)80023-2. [DOI] [PubMed] [Google Scholar]
  11. Frentzel S., Pesold-Hurt B., Seelig A., Kloetzel P. M. 20 S proteasomes are assembled via distinct precursor complexes. Processing of LMP2 and LMP7 proproteins takes place in 13-16 S preproteasome complexes. J Mol Biol. 1994 Mar 4;236(4):975–981. doi: 10.1016/0022-2836(94)90003-5. [DOI] [PubMed] [Google Scholar]
  12. Gerards W. L., Enzlin J., Häner M., Hendriks I. L., Aebi U., Bloemendal H., Boelens W. The human alpha-type proteasomal subunit HsC8 forms a double ringlike structure, but does not assemble into proteasome-like particles with the beta-type subunits HsDelta or HsBPROS26. J Biol Chem. 1997 Apr 11;272(15):10080–10086. doi: 10.1074/jbc.272.15.10080. [DOI] [PubMed] [Google Scholar]
  13. Gerards W. L., de Jong W. W., Bloemendal H., Boelens W. The human proteasomal subunit HsC8 induces ring formation of other alpha-type subunits. J Mol Biol. 1998 Jan 9;275(1):113–121. doi: 10.1006/jmbi.1997.1429. [DOI] [PubMed] [Google Scholar]
  14. Goldberg A. L., Akopian T. N., Kisselev A. F., Lee D. H., Rohrwild M. New insights into the mechanisms and importance of the proteasome in intracellular protein degradation. Biol Chem. 1997 Mar-Apr;378(3-4):131–140. [PubMed] [Google Scholar]
  15. Groll M., Ditzel L., Löwe J., Stock D., Bochtler M., Bartunik H. D., Huber R. Structure of 20S proteasome from yeast at 2.4 A resolution. Nature. 1997 Apr 3;386(6624):463–471. doi: 10.1038/386463a0. [DOI] [PubMed] [Google Scholar]
  16. Hua S., To W. Y., Nguyen T. T., Wong M. L., Wang C. C. Purification and characterization of proteasomes from Trypanosoma brucei. Mol Biochem Parasitol. 1996 Jun;78(1-2):33–46. doi: 10.1016/s0166-6851(96)02599-6. [DOI] [PubMed] [Google Scholar]
  17. Huang L., Shen M., Chernushevich I., Burlingame A. L., Wang C. C., Robertson C. D. Identification and isolation of three proteasome subunits and their encoding genes from Trypanosoma brucei. Mol Biochem Parasitol. 1999 Aug 20;102(2):211–223. doi: 10.1016/s0166-6851(99)00096-1. [DOI] [PubMed] [Google Scholar]
  18. Jochimsen B., Nygaard P., Vestergaard T. Location on the chromosome of Escherichia coli of genes governing purine metabolism. Adenosine deaminase (add), guanosine kinase (gsk) and hypoxanthine phosphoribosyltransferase (hpt). Mol Gen Genet. 1975 Dec 30;143(1):85–91. doi: 10.1007/BF00269424. [DOI] [PubMed] [Google Scholar]
  19. Kristensen P., Johnsen A. H., Uerkvitz W., Tanaka K., Hendil K. B. Human proteasome subunits from 2-dimensional gels identified by partial sequencing. Biochem Biophys Res Commun. 1994 Dec 30;205(3):1785–1789. doi: 10.1006/bbrc.1994.2876. [DOI] [PubMed] [Google Scholar]
  20. Löwe J., Stock D., Jap B., Zwickl P., Baumeister W., Huber R. Crystal structure of the 20S proteasome from the archaeon T. acidophilum at 3.4 A resolution. Science. 1995 Apr 28;268(5210):533–539. doi: 10.1126/science.7725097. [DOI] [PubMed] [Google Scholar]
  21. Maurizi M. R. Proteases and protein degradation in Escherichia coli. Experientia. 1992 Feb 15;48(2):178–201. doi: 10.1007/BF01923511. [DOI] [PubMed] [Google Scholar]
  22. Medina-Acosta E., Cross G. A. Rapid isolation of DNA from trypanosomatid protozoa using a simple 'mini-prep' procedure. Mol Biochem Parasitol. 1993 Jun;59(2):327–329. doi: 10.1016/0166-6851(93)90231-l. [DOI] [PubMed] [Google Scholar]
  23. Nandi D., Woodward E., Ginsburg D. B., Monaco J. J. Intermediates in the formation of mouse 20S proteasomes: implications for the assembly of precursor beta subunits. EMBO J. 1997 Sep 1;16(17):5363–5375. doi: 10.1093/emboj/16.17.5363. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Petit F., Jarrousse A. S., Dahlmann B., Sobek A., Hendil K. B., Buri J., Briand Y., Schmid H. P. Involvement of proteasomal subunits zeta and iota in RNA degradation. Biochem J. 1997 Aug 15;326(Pt 1):93–98. doi: 10.1042/bj3260093. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Saxton W. O., Frank J. Motif detection in quantum noise-limited electron micrographs by cross-correlation. Ultramicroscopy. 1977 Apr;2(2-3):219–227. doi: 10.1016/s0304-3991(76)91385-1. [DOI] [PubMed] [Google Scholar]
  26. Schmidtke G., Schmidt M., Kloetzel P. M. Maturation of mammalian 20 S proteasome: purification and characterization of 13 S and 16 S proteasome precursor complexes. J Mol Biol. 1997 Apr 25;268(1):95–106. doi: 10.1006/jmbi.1997.0947. [DOI] [PubMed] [Google Scholar]
  27. Schroeter J. P., Bretaudiere J. P. SUPRIM: easily modified image processing software. J Struct Biol. 1996 Jan-Feb;116(1):131–137. doi: 10.1006/jsbi.1996.0021. [DOI] [PubMed] [Google Scholar]
  28. Seemüller E., Lupas A., Stock D., Löwe J., Huber R., Baumeister W. Proteasome from Thermoplasma acidophilum: a threonine protease. Science. 1995 Apr 28;268(5210):579–582. doi: 10.1126/science.7725107. [DOI] [PubMed] [Google Scholar]
  29. Sogin M. L., Gunderson J. H., Elwood H. J., Alonso R. A., Peattie D. A. Phylogenetic meaning of the kingdom concept: an unusual ribosomal RNA from Giardia lamblia. Science. 1989 Jan 6;243(4887):75–77. doi: 10.1126/science.2911720. [DOI] [PubMed] [Google Scholar]
  30. Tamura T., Shimbara N., Aki M., Ishida N., Bey F., Scherrer K., Tanaka K., Ichihara A. Molecular cloning of cDNAs for rat proteasomes: deduced primary structures of four other subunits. J Biochem. 1992 Oct;112(4):530–534. doi: 10.1093/oxfordjournals.jbchem.a123933. [DOI] [PubMed] [Google Scholar]
  31. To W. Y., Wang C. C. Identification and characterization of an activated 20S proteasome in Trypanosoma brucei. FEBS Lett. 1997 Mar 10;404(2-3):253–262. doi: 10.1016/s0014-5793(97)00116-6. [DOI] [PubMed] [Google Scholar]
  32. Wahl G. M., Meinkoth J. L., Kimmel A. R. Northern and Southern blots. Methods Enzymol. 1987;152:572–581. doi: 10.1016/0076-6879(87)52064-x. [DOI] [PubMed] [Google Scholar]
  33. Yang Y., Früh K., Ahn K., Peterson P. A. In vivo assembly of the proteasomal complexes, implications for antigen processing. J Biol Chem. 1995 Nov 17;270(46):27687–27694. doi: 10.1074/jbc.270.46.27687. [DOI] [PubMed] [Google Scholar]
  34. Zwickl P., Grziwa A., Pühler G., Dahlmann B., Lottspeich F., Baumeister W. Primary structure of the Thermoplasma proteasome and its implications for the structure, function, and evolution of the multicatalytic proteinase. Biochemistry. 1992 Feb 4;31(4):964–972. doi: 10.1021/bi00119a004. [DOI] [PubMed] [Google Scholar]
  35. Zwickl P., Kleinz J., Baumeister W. Critical elements in proteasome assembly. Nat Struct Biol. 1994 Nov;1(11):765–770. doi: 10.1038/nsb1194-765. [DOI] [PubMed] [Google Scholar]
  36. Zwickl P., Lottspeich F., Baumeister W. Expression of functional Thermoplasma acidophilum proteasomes in Escherichia coli. FEBS Lett. 1992 Nov 9;312(2-3):157–160. doi: 10.1016/0014-5793(92)80925-7. [DOI] [PubMed] [Google Scholar]
  37. Zühl F., Seemüller E., Golbik R., Baumeister W. Dissecting the assembly pathway of the 20S proteasome. FEBS Lett. 1997 Nov 24;418(1-2):189–194. doi: 10.1016/s0014-5793(97)01370-7. [DOI] [PubMed] [Google Scholar]
  38. Zühl F., Tamura T., Dolenc I., Cejka Z., Nagy I., De Mot R., Baumeister W. Subunit topology of the Rhodococcus proteasome. FEBS Lett. 1997 Jan 2;400(1):83–90. doi: 10.1016/s0014-5793(96)01403-2. [DOI] [PubMed] [Google Scholar]
  39. el-Sayed N. M., Alarcon C. M., Beck J. C., Sheffield V. C., Donelson J. E. cDNA expressed sequence tags of Trypanosoma brucei rhodesiense provide new insights into the biology of the parasite. Mol Biochem Parasitol. 1995 Jul;73(1-2):75–90. doi: 10.1016/0166-6851(95)00098-l. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES