Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1999 Dec 1;344(Pt 2):385–390.

Structure of the carbonic anhydrase VI (CA6) gene: evidence for two distinct groups within the alpha-CA gene family.

W Jiang 1, D Gupta 1
PMCID: PMC1220654  PMID: 10567219

Abstract

The secreted carbonic anhydrase (CA VI) is believed to be one of the oldest mammalian CAs in evolutionary terms. To elucidate its gene structure and compare it with other members of the alpha-CA family, we cloned genomic fragments encoding the bovine CA6 gene and determined its exon/intron organization. The gene spans approx. 25 kb and consists of eight exons and seven introns. Exon 1 encodes the 5' untranslated region, the signal peptide and the N-terminus of the mature enzyme. Exon 8 encodes the 3' untranslated region and the C-terminal extension that is unique to CA VI. Exons 2-7 encode the CA domain, which shows significant sequence similarity to other CAs. Two distinct groups exist in the alpha-CA family on the basis of a comparison of the known gene structures. One group consists of the cytoplasmic (CA I, II, III and VII) and mitochondrial (CA V) members. The other group consists of the membrane-bound (CA IV and IX) and secreted (CA VI) members. In particular, the seven exon/intron boundaries in the CA domain of the CA6 gene are conserved in the CA9 gene, which encodes the multidomain protein CA IX that is overexpressed in tumours and has transforming potential.

Full Text

The Full Text of this article is available as a PDF (193.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aldred P., Fu P., Barrett G., Penschow J. D., Wright R. D., Coghlan J. P., Fernley R. T. Human secreted carbonic anhydrase: cDNA cloning, nucleotide sequence, and hybridization histochemistry. Biochemistry. 1991 Jan 15;30(2):569–575. doi: 10.1021/bi00216a035. [DOI] [PubMed] [Google Scholar]
  2. Fernley R. T., Wright R. D., Coghlan J. P. Complete amino acid sequence of ovine salivary carbonic anhydrase. Biochemistry. 1988 Apr 19;27(8):2815–2820. doi: 10.1021/bi00408a023. [DOI] [PubMed] [Google Scholar]
  3. Gilbert W., Glynias M. On the ancient nature of introns. Gene. 1993 Dec 15;135(1-2):137–144. doi: 10.1016/0378-1119(93)90058-b. [DOI] [PubMed] [Google Scholar]
  4. Hewett-Emmett D., Tashian R. E. Functional diversity, conservation, and convergence in the evolution of the alpha-, beta-, and gamma-carbonic anhydrase gene families. Mol Phylogenet Evol. 1996 Feb;5(1):50–77. doi: 10.1006/mpev.1996.0006. [DOI] [PubMed] [Google Scholar]
  5. Ivanov S. V., Kuzmin I., Wei M. H., Pack S., Geil L., Johnson B. E., Stanbridge E. J., Lerman M. I. Down-regulation of transmembrane carbonic anhydrases in renal cell carcinoma cell lines by wild-type von Hippel-Lindau transgenes. Proc Natl Acad Sci U S A. 1998 Oct 13;95(21):12596–12601. doi: 10.1073/pnas.95.21.12596. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Jiang W., Woitach J. T., Gupta D., Bhavanandan V. P. Sequence of a second gene encoding bovine submaxillary mucin: implication for mucin heterogeneity and cloning. Biochem Biophys Res Commun. 1998 Oct 20;251(2):550–556. doi: 10.1006/bbrc.1998.9515. [DOI] [PubMed] [Google Scholar]
  7. Jiang W., Woitach J. T., Gupta D. Sequence of bovine carbonic anhydrase VI: potential recognition sites for N-acetylgalactosaminyltransferase. Biochem J. 1996 Aug 15;318(Pt 1):291–296. doi: 10.1042/bj3180291. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Lloyd J., Brownson C., Tweedie S., Charlton J., Edwards Y. H. Human muscle carbonic anhydrase: gene structure and DNA methylation patterns in fetal and adult tissues. Genes Dev. 1987 Aug;1(6):594–602. doi: 10.1101/gad.1.6.594. [DOI] [PubMed] [Google Scholar]
  9. Lowe N., Brady H. J., Barlow J. H., Sowden J. C., Edwards M., Butterworth P. H. Structure and methylation patterns of the gene encoding human carbonic anhydrase I. Gene. 1990 Sep 14;93(2):277–283. doi: 10.1016/0378-1119(90)90236-k. [DOI] [PubMed] [Google Scholar]
  10. Lowe N., Edwards Y. H., Edwards M., Butterworth P. H. Physical mapping of the human carbonic anhydrase gene cluster on chromosome 8. Genomics. 1991 Aug;10(4):882–888. doi: 10.1016/0888-7543(91)90176-f. [DOI] [PubMed] [Google Scholar]
  11. Montgomery J. C., Venta P. J., Eddy R. L., Fukushima Y. S., Shows T. B., Tashian R. E. Characterization of the human gene for a newly discovered carbonic anhydrase, CA VII, and its localization to chromosome 16. Genomics. 1991 Dec;11(4):835–848. doi: 10.1016/0888-7543(91)90006-z. [DOI] [PubMed] [Google Scholar]
  12. Mount S. M. A catalogue of splice junction sequences. Nucleic Acids Res. 1982 Jan 22;10(2):459–472. doi: 10.1093/nar/10.2.459. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Nagao Y., Batanian J. R., Clemente M. F., Sly W. S. Genomic organization of the human gene (CA5) and pseudogene for mitochondrial carbonic anhydrase V and their localization to chromosomes 16q and 16p. Genomics. 1995 Aug 10;28(3):477–484. doi: 10.1006/geno.1995.1177. [DOI] [PubMed] [Google Scholar]
  14. Okuyama T., Batanian J. R., Sly W. S. Genomic organization and localization of gene for human carbonic anhydrase IV to chromosome 17q. Genomics. 1993 Jun;16(3):678–684. doi: 10.1006/geno.1993.1247. [DOI] [PubMed] [Google Scholar]
  15. Opavský R., Pastoreková S., Zelník V., Gibadulinová A., Stanbridge E. J., Závada J., Kettmann R., Pastorek J. Human MN/CA9 gene, a novel member of the carbonic anhydrase family: structure and exon to protein domain relationships. Genomics. 1996 May 1;33(3):480–487. doi: 10.1006/geno.1996.0223. [DOI] [PubMed] [Google Scholar]
  16. Palmer J. D., Logsdon J. M., Jr The recent origins of introns. Curr Opin Genet Dev. 1991 Dec;1(4):470–477. doi: 10.1016/s0959-437x(05)80194-7. [DOI] [PubMed] [Google Scholar]
  17. Parkkila S., Parkkila A. K. Carbonic anhydrase in the alimentary tract. Roles of the different isozymes and salivary factors in the maintenance of optimal conditions in the gastrointestinal canal. Scand J Gastroenterol. 1996 Apr;31(4):305–317. doi: 10.3109/00365529609006403. [DOI] [PubMed] [Google Scholar]
  18. Patthy L. Intron-dependent evolution: preferred types of exons and introns. FEBS Lett. 1987 Apr 6;214(1):1–7. doi: 10.1016/0014-5793(87)80002-9. [DOI] [PubMed] [Google Scholar]
  19. Perrotti D., Melotti P., Skorski T., Casella I., Peschle C., Calabretta B. Overexpression of the zinc finger protein MZF1 inhibits hematopoietic development from embryonic stem cells: correlation with negative regulation of CD34 and c-myb promoter activity. Mol Cell Biol. 1995 Nov;15(11):6075–6087. doi: 10.1128/mcb.15.11.6075. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Quandt K., Frech K., Karas H., Wingender E., Werner T. MatInd and MatInspector: new fast and versatile tools for detection of consensus matches in nucleotide sequence data. Nucleic Acids Res. 1995 Dec 11;23(23):4878–4884. doi: 10.1093/nar/23.23.4878. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Shapiro L. H., Venta P. J., Tashian R. E. Molecular analysis of G+C-rich upstream sequences regulating transcription of the human carbonic anhydrase II gene. Mol Cell Biol. 1987 Dec;7(12):4589–4593. doi: 10.1128/mcb.7.12.4589. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Shivdasani R. A., Orkin S. H. Erythropoiesis and globin gene expression in mice lacking the transcription factor NF-E2. Proc Natl Acad Sci U S A. 1995 Sep 12;92(19):8690–8694. doi: 10.1073/pnas.92.19.8690. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Sly W. S., Hu P. Y. Human carbonic anhydrases and carbonic anhydrase deficiencies. Annu Rev Biochem. 1995;64:375–401. doi: 10.1146/annurev.bi.64.070195.002111. [DOI] [PubMed] [Google Scholar]
  24. Sutherland G. R., Baker E., Fernandez K. E., Callen D. F., Aldred P., Coghlan J. P., Wright R. D., Fernley R. T. The gene for human carbonic anhydrase VI(CA6) is on the tip of the short arm of chromosome 1. Cytogenet Cell Genet. 1989;50(2-3):149–150. doi: 10.1159/000132746. [DOI] [PubMed] [Google Scholar]
  25. Thatcher B. J., Doherty A. E., Orvisky E., Martin B. M., Henkin R. I. Gustin from human parotid saliva is carbonic anhydrase VI. Biochem Biophys Res Commun. 1998 Sep 29;250(3):635–641. doi: 10.1006/bbrc.1998.9356. [DOI] [PubMed] [Google Scholar]
  26. Thompson J. D., Higgins D. G., Gibson T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994 Nov 11;22(22):4673–4680. doi: 10.1093/nar/22.22.4673. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Türeci O., Sahin U., Vollmar E., Siemer S., Göttert E., Seitz G., Parkkila A. K., Shah G. N., Grubb J. H., Pfreundschuh M. Human carbonic anhydrase XII: cDNA cloning, expression, and chromosomal localization of a carbonic anhydrase gene that is overexpressed in some renal cell cancers. Proc Natl Acad Sci U S A. 1998 Jun 23;95(13):7608–7613. doi: 10.1073/pnas.95.13.7608. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Venta P. J., Welty R. J., Johnson T. M., Sly W. S., Tashian R. E. Carbonic anhydrase II deficiency syndrome in a Belgian family is caused by a point mutation at an invariant histidine residue (107 His----Tyr): complete structure of the normal human CA II gene. Am J Hum Genet. 1991 Nov;49(5):1082–1090. [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES