Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1999 Dec 1;344(Pt 2):403–411.

Serine/threonine phosphorylation of calmodulin modulates its interaction with the binding domains of target enzymes.

E Leclerc 1, C Corti 1, H Schmid 1, S Vetter 1, P James 1, E Carafoli 1
PMCID: PMC1220657  PMID: 10567222

Abstract

The interaction of serine/threonine-phosphorylated calmodulin with synthetic peptides corresponding to the calmodulin-binding domains of six enzymes has been studied by fluorescence spectroscopy. For five peptides, the dissociation constant of the calmodulin-peptide complex (K(d)) increased when calmodulin was phosphorylated. An increase of more than one order of magnitude was observed with peptides derived from smooth-muscle myosin light-chain kinase and cAMP phosphodiesterase. In contrast, only a slight increase in K(d) was noted with two peptides derived from the plasma membrane Ca(2+)-ATPase and for the peptide derived from nitric oxide synthase. No significant change in affinity was detected with the peptide derived from calcineurin. In contrast, a decrease in the dissociation constant was observed with the peptide derived from the Ca(2+)-calmodulin dependent kinase II. Phosphorylation also affected the peptide-calmodulin binding stoichiometry: a decrease from two to one binding sites was observed with the peptides derived from myosin light-chain kinase and phosphodiesterase.

Full Text

The Full Text of this article is available as a PDF (215.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allende J. E., Allende C. C. Protein kinases. 4. Protein kinase CK2: an enzyme with multiple substrates and a puzzling regulation. FASEB J. 1995 Mar;9(5):313–323. doi: 10.1096/fasebj.9.5.7896000. [DOI] [PubMed] [Google Scholar]
  2. Anagli J., Hofmann F., Quadroni M., Vorherr T., Carafoli E. The calmodulin-binding domain of the inducible (macrophage) nitric oxide synthase. Eur J Biochem. 1995 Nov 1;233(3):701–708. doi: 10.1111/j.1432-1033.1995.701_3.x. [DOI] [PubMed] [Google Scholar]
  3. Anderson J. T., Rogers R. P., Jarrett H. W. Ca2+-calmodulin binds to the carboxyl-terminal domain of dystrophin. J Biol Chem. 1996 Mar 22;271(12):6605–6610. doi: 10.1074/jbc.271.12.6605. [DOI] [PubMed] [Google Scholar]
  4. Babu Y. S., Bugg C. E., Cook W. J. Structure of calmodulin refined at 2.2 A resolution. J Mol Biol. 1988 Nov 5;204(1):191–204. doi: 10.1016/0022-2836(88)90608-0. [DOI] [PubMed] [Google Scholar]
  5. Bennett M. K., Kennedy M. B. Deduced primary structure of the beta subunit of brain type II Ca2+/calmodulin-dependent protein kinase determined by molecular cloning. Proc Natl Acad Sci U S A. 1987 Apr;84(7):1794–1798. doi: 10.1073/pnas.84.7.1794. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bredt D. S., Snyder S. H. Isolation of nitric oxide synthetase, a calmodulin-requiring enzyme. Proc Natl Acad Sci U S A. 1990 Jan;87(2):682–685. doi: 10.1073/pnas.87.2.682. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Chabbert M., Lukas T. J., Watterson D. M., Axelsen P. H., Prendergast F. G. Fluorescence analysis of calmodulin mutants containing tryptophan: conformational changes induced by calmodulin-binding peptides from myosin light chain kinase and protein kinase II. Biochemistry. 1991 Jul 30;30(30):7615–7630. doi: 10.1021/bi00244a034. [DOI] [PubMed] [Google Scholar]
  8. Charbonneau H., Kumar S., Novack J. P., Blumenthal D. K., Griffin P. R., Shabanowitz J., Hunt D. F., Beavo J. A., Walsh K. A. Evidence for domain organization within the 61-kDa calmodulin-dependent cyclic nucleotide phosphodiesterase from bovine brain. Biochemistry. 1991 Aug 13;30(32):7931–7940. doi: 10.1021/bi00246a009. [DOI] [PubMed] [Google Scholar]
  9. Chen R. F. Dansyl labeled proteins: determination of extinction coefficienc and number of bound residues with radioactive dansyl chloride. Anal Biochem. 1968 Oct 24;25(1):412–416. doi: 10.1016/0003-2697(68)90116-4. [DOI] [PubMed] [Google Scholar]
  10. Craescu C. T., Bouhss A., Mispelter J., Diesis E., Popescu A., Chiriac M., Bârzu O. Calmodulin binding of a peptide derived from the regulatory domain of Bordetella pertussis adenylate cyclase. J Biol Chem. 1995 Mar 31;270(13):7088–7096. doi: 10.1074/jbc.270.13.7088. [DOI] [PubMed] [Google Scholar]
  11. Davis H. W., Crimmins D. L., Thoma R. S., Garcia J. G. Phosphorylation of calmodulin in the first calcium-binding pocket by myosin light chain kinase. Arch Biochem Biophys. 1996 Aug 1;332(1):101–109. doi: 10.1006/abbi.1996.0321. [DOI] [PubMed] [Google Scholar]
  12. Fukami Y., Nakamura T., Nakayama A., Kanehisa T. Phosphorylation of tyrosine residues of calmodulin in Rous sarcoma virus-transformed cells. Proc Natl Acad Sci U S A. 1986 Jun;83(12):4190–4193. doi: 10.1073/pnas.83.12.4190. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Graves C. B., Gale R. D., Laurino J. P., McDonald J. M. The insulin receptor and calmodulin. Calmodulin enhances insulin-mediated receptor kinase activity and insulin stimulates phosphorylation of calmodulin. J Biol Chem. 1986 Aug 5;261(22):10429–10438. [PubMed] [Google Scholar]
  14. Haystead T. A., Campbell D. G., Hardie D. G. Analysis of sites phosphorylated on acetyl-CoA carboxylase in response to insulin in isolated adipocytes. Comparison with sites phosphorylated by casein kinase-2 and the calmodulin-dependent multiprotein kinase. Eur J Biochem. 1988 Aug 1;175(2):347–354. doi: 10.1111/j.1432-1033.1988.tb14203.x. [DOI] [PubMed] [Google Scholar]
  15. Heidorn D. B., Seeger P. A., Rokop S. E., Blumenthal D. K., Means A. R., Crespi H., Trewhella J. Changes in the structure of calmodulin induced by a peptide based on the calmodulin-binding domain of myosin light chain kinase. Biochemistry. 1989 Aug 8;28(16):6757–6764. doi: 10.1021/bi00442a032. [DOI] [PubMed] [Google Scholar]
  16. Hofmann F., Anagli J., Carafoli E., Vorherr T. Phosphorylation of the calmodulin binding domain of the plasma membrane Ca2+ pump by protein kinase C reduces its interaction with calmodulin and with its pump receptor site. J Biol Chem. 1994 Sep 30;269(39):24298–24303. [PubMed] [Google Scholar]
  17. Ikura M., Clore G. M., Gronenborn A. M., Zhu G., Klee C. B., Bax A. Solution structure of a calmodulin-target peptide complex by multidimensional NMR. Science. 1992 May 1;256(5057):632–638. doi: 10.1126/science.1585175. [DOI] [PubMed] [Google Scholar]
  18. James P., Maeda M., Fischer R., Verma A. K., Krebs J., Penniston J. T., Carafoli E. Identification and primary structure of a calmodulin binding domain of the Ca2+ pump of human erythrocytes. J Biol Chem. 1988 Feb 25;263(6):2905–2910. [PubMed] [Google Scholar]
  19. Johnson J. D., Wittenauer L. A. A fluorescent calmodulin that reports the binding of hydrophobic inhibitory ligands. Biochem J. 1983 May 1;211(2):473–479. doi: 10.1042/bj2110473. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Joyal J. L., Sacks D. B. Insulin-dependent phosphorylation of calmodulin in rat hepatocytes. J Biol Chem. 1994 Nov 25;269(47):30039–30048. [PubMed] [Google Scholar]
  21. Kataoka M., Head J. F., Vorherr T., Krebs J., Carafoli E. Small-angle X-ray scattering study of calmodulin bound to two peptides corresponding to parts of the calmodulin-binding domain of the plasma membrane Ca2+ pump. Biochemistry. 1991 Jun 25;30(25):6247–6251. doi: 10.1021/bi00239a024. [DOI] [PubMed] [Google Scholar]
  22. Kim S. J., Kahn C. R. Insulin stimulates phosphorylation of c-Jun, c-Fos, and Fos-related proteins in cultured adipocytes. J Biol Chem. 1994 Apr 22;269(16):11887–11892. [PubMed] [Google Scholar]
  23. Kincaid R. L., Nightingale M. S., Martin B. M. Characterization of a cDNA clone encoding the calmodulin-binding domain of mouse brain calcineurin. Proc Natl Acad Sci U S A. 1988 Dec;85(23):8983–8987. doi: 10.1073/pnas.85.23.8983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Klarlund J. K., Czech M. P. Insulin-like growth factor I and insulin rapidly increase casein kinase II activity in BALB/c 3T3 fibroblasts. J Biol Chem. 1988 Nov 5;263(31):15872–15875. [PubMed] [Google Scholar]
  25. Leclerc E., Vetter S. Characterization of a calcium-dependent calmodulin-binding domain in the 135-kD human protein 4.1 isoform. Eur J Biochem. 1998 Dec 1;258(2):567–571. doi: 10.1046/j.1432-1327.1998.2580567.x. [DOI] [PubMed] [Google Scholar]
  26. Li C., Manley J. L. Allosteric regulation of even-skipped repression activity by phosphorylation. Mol Cell. 1999 Jan;3(1):77–86. doi: 10.1016/s1097-2765(00)80176-8. [DOI] [PubMed] [Google Scholar]
  27. Lukas T. J., Burgess W. H., Prendergast F. G., Lau W., Watterson D. M. Calmodulin binding domains: characterization of a phosphorylation and calmodulin binding site from myosin light chain kinase. Biochemistry. 1986 Mar 25;25(6):1458–1464. doi: 10.1021/bi00354a041. [DOI] [PubMed] [Google Scholar]
  28. Malencik D. A., Anderson S. R. Binding of simple peptides, hormones, and neurotransmitters by calmodulin. Biochemistry. 1982 Jul 6;21(14):3480–3486. doi: 10.1021/bi00257a035. [DOI] [PubMed] [Google Scholar]
  29. Malencik D. A., Anderson S. R. High affinity binding of the mastoparans by calmodulin. Biochem Biophys Res Commun. 1983 Jul 18;114(1):50–56. doi: 10.1016/0006-291x(83)91592-9. [DOI] [PubMed] [Google Scholar]
  30. Malencik D. A., Anderson S. R. Peptide binding by calmodulin and its proteolytic fragments and by troponin C. Biochemistry. 1984 May 22;23(11):2420–2428. doi: 10.1021/bi00306a016. [DOI] [PubMed] [Google Scholar]
  31. Marin O., Meggio F., Pinna L. A. Structural features underlying the unusual mode of calmodulin phosphorylation by protein kinase CK2: A study with synthetic calmodulin fragments. Biochem Biophys Res Commun. 1999 Mar 16;256(2):442–446. doi: 10.1006/bbrc.1999.0348. [DOI] [PubMed] [Google Scholar]
  32. Martoglio B., Graf R., Dobberstein B. Signal peptide fragments of preprolactin and HIV-1 p-gp160 interact with calmodulin. EMBO J. 1997 Nov 17;16(22):6636–6645. doi: 10.1093/emboj/16.22.6636. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Meador W. E., Means A. R., Quiocho F. A. Modulation of calmodulin plasticity in molecular recognition on the basis of x-ray structures. Science. 1993 Dec 10;262(5140):1718–1721. doi: 10.1126/science.8259515. [DOI] [PubMed] [Google Scholar]
  34. Meador W. E., Means A. R., Quiocho F. A. Target enzyme recognition by calmodulin: 2.4 A structure of a calmodulin-peptide complex. Science. 1992 Aug 28;257(5074):1251–1255. doi: 10.1126/science.1519061. [DOI] [PubMed] [Google Scholar]
  35. Meggio F., Brunati A. M., Pinna L. A. Polycation-dependent, Ca2+-antagonized phosphorylation of calmodulin by casein kinase-2 and a spleen tyrosine protein kinase. FEBS Lett. 1987 May 11;215(2):241–246. doi: 10.1016/0014-5793(87)80154-0. [DOI] [PubMed] [Google Scholar]
  36. Meggio F., Deana A. D., Pinna L. A. Endogenous phosphate acceptor proteins for rat liver cytosolic casein kinases. J Biol Chem. 1981 Dec 10;256(23):11958–11961. [PubMed] [Google Scholar]
  37. Nakajo S., Hayashi K., Daimatsu T., Tanaka M., Nakaya K., Nakamura Y. Phosphorylation of rat brain calmodulin in vivo and in vitro. Biochem Int. 1986 Oct;13(4):687–693. [PubMed] [Google Scholar]
  38. Nakajo S., Masuda Y., Nakaya K., Nakamura Y. Determination of the phosphorylation sites of calmodulin catalyzed by casein kinase 2. J Biochem. 1988 Dec;104(6):946–951. doi: 10.1093/oxfordjournals.jbchem.a122588. [DOI] [PubMed] [Google Scholar]
  39. Persechini A., Blumenthal D. K., Jarrett H. W., Klee C. B., Hardy D. O., Kretsinger R. H. The effects of deletions in the central helix of calmodulin on enzyme activation and peptide binding. J Biol Chem. 1989 May 15;264(14):8052–8058. [PubMed] [Google Scholar]
  40. Persechini A., Kretsinger R. H. The central helix of calmodulin functions as a flexible tether. J Biol Chem. 1988 Sep 5;263(25):12175–12178. [PubMed] [Google Scholar]
  41. Pinna L. A., Meggio F. Protein kinase CK2 ("casein kinase-2") and its implication in cell division and proliferation. Prog Cell Cycle Res. 1997;3:77–97. doi: 10.1007/978-1-4615-5371-7_7. [DOI] [PubMed] [Google Scholar]
  42. Plancke Y. D., Lazarides E. Evidence for a phosphorylated form of calmodulin in chicken brain and muscle. Mol Cell Biol. 1983 Aug;3(8):1412–1420. doi: 10.1128/mcb.3.8.1412. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Putkey J. A., Ono T., VanBerkum M. F., Means A. R. Functional significance of the central helix in calmodulin. J Biol Chem. 1988 Aug 15;263(23):11242–11249. [PubMed] [Google Scholar]
  44. Putkey J. A., Waxham M. N. A peptide model for calmodulin trapping by calcium/calmodulin-dependent protein kinase II. J Biol Chem. 1996 Nov 22;271(47):29619–29623. doi: 10.1074/jbc.271.47.29619. [DOI] [PubMed] [Google Scholar]
  45. Quadroni M., James P., Carafoli E. Isolation of phosphorylated calmodulin from rat liver and identification of the in vivo phosphorylation sites. J Biol Chem. 1994 Jun 10;269(23):16116–16122. [PubMed] [Google Scholar]
  46. Quadroni M., L'Hostis E. L., Corti C., Myagkikh I., Durussel I., Cox J., James P., Carafoli E. Phosphorylation of calmodulin alters its potency as an activator of target enzymes. Biochemistry. 1998 May 5;37(18):6523–6532. doi: 10.1021/bi972930+. [DOI] [PubMed] [Google Scholar]
  47. Rhoads A. R., Friedberg F. Sequence motifs for calmodulin recognition. FASEB J. 1997 Apr;11(5):331–340. doi: 10.1096/fasebj.11.5.9141499. [DOI] [PubMed] [Google Scholar]
  48. Rhyner J. A., Koller M., Durussel-Gerber I., Cox J. A., Strehler E. E. Characterization of the human calmodulin-like protein expressed in Escherichia coli. Biochemistry. 1992 Dec 29;31(51):12826–12832. doi: 10.1021/bi00166a017. [DOI] [PubMed] [Google Scholar]
  49. Risinger C., Bennett M. K. Differential phosphorylation of syntaxin and synaptosome-associated protein of 25 kDa (SNAP-25) isoforms. J Neurochem. 1999 Feb;72(2):614–624. doi: 10.1046/j.1471-4159.1999.0720614.x. [DOI] [PubMed] [Google Scholar]
  50. Roberts D. M., Rowe P. M., Siegel F. L., Lukas T. J., Watterson D. M. Trimethyllysine and protein function. Effect of methylation and mutagenesis of lysine 115 of calmodulin on NAD kinase activation. J Biol Chem. 1986 Feb 5;261(4):1491–1494. [PubMed] [Google Scholar]
  51. Sacks D. B., Davis H. W., Crimmins D. L., McDonald J. M. Insulin-stimulated phosphorylation of calmodulin. Biochem J. 1992 Aug 15;286(Pt 1):211–216. doi: 10.1042/bj2860211. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Sacks D. B., Davis H. W., Williams J. P., Sheehan E. L., Garcia J. G., McDonald J. M. Phosphorylation by casein kinase II alters the biological activity of calmodulin. Biochem J. 1992 Apr 1;283(Pt 1):21–24. doi: 10.1042/bj2830021. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Sacks D. B., Fujita-Yamaguchi Y., Gale R. D., McDonald J. M. Tyrosine-specific phosphorylation of calmodulin by the insulin receptor kinase purified from human placenta. Biochem J. 1989 Nov 1;263(3):803–812. doi: 10.1042/bj2630803. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Sacks D. B., Mazus B., Joyal J. L. The activity of calmodulin is altered by phosphorylation: modulation of calmodulin function by the site of phosphate incorporation. Biochem J. 1995 Nov 15;312(Pt 1):197–204. doi: 10.1042/bj3120197. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Sacks D. B., McDonald J. M. Insulin-stimulated phosphorylation of calmodulin by rat liver insulin receptor preparations. J Biol Chem. 1988 Feb 15;263(5):2377–2383. [PubMed] [Google Scholar]
  56. Saeki K., Yuo A., Takaku F. Cell-cycle-regulated phosphorylation of cAMP response element-binding protein: identification of novel phosphorylation sites. Biochem J. 1999 Feb 15;338(Pt 1):49–54. [PMC free article] [PubMed] [Google Scholar]
  57. San José E., Benguría A., Geller P., Villalobo A. Calmodulin inhibits the epidermal growth factor receptor tyrosine kinase. J Biol Chem. 1992 Jul 25;267(21):15237–15245. [PubMed] [Google Scholar]
  58. Schuster N., Prowald A., Schneider E., Scheidtmann K. H., Montenarh M. Regulation of p53 mediated transactivation by the beta-subunit of protein kinase CK2. FEBS Lett. 1999 Mar 26;447(2-3):160–166. doi: 10.1016/s0014-5793(99)00273-2. [DOI] [PubMed] [Google Scholar]
  59. Sommercorn J., Mulligan J. A., Lozeman F. J., Krebs E. G. Activation of casein kinase II in response to insulin and to epidermal growth factor. Proc Natl Acad Sci U S A. 1987 Dec;84(24):8834–8838. doi: 10.1073/pnas.84.24.8834. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Takano E., Hatanaka M., Maki M. Real-time-analysis of the calcium-dependent interaction between calmodulin and a synthetic oligopeptide of calcineurin by a surface plasmon resonance biosensor. FEBS Lett. 1994 Sep 26;352(2):247–250. doi: 10.1016/0014-5793(94)00965-1. [DOI] [PubMed] [Google Scholar]
  61. VanBerkum M. F., Means A. R. Three amino acid substitutions in domain I of calmodulin prevent the activation of chicken smooth muscle myosin light chain kinase. J Biol Chem. 1991 Nov 15;266(32):21488–21495. [PubMed] [Google Scholar]
  62. Verghese G. M., Johnson J. D., Vasulka C., Haupt D. M., Stumpo D. J., Blackshear P. J. Protein kinase C-mediated phosphorylation and calmodulin binding of recombinant myristoylated alanine-rich C kinase substrate (MARCKS) and MARCKS-related protein. J Biol Chem. 1994 Mar 25;269(12):9361–9367. [PubMed] [Google Scholar]
  63. Vorherr T., James P., Krebs J., Enyedi A., McCormick D. J., Penniston J. T., Carafoli E. Interaction of calmodulin with the calmodulin binding domain of the plasma membrane Ca2+ pump. Biochemistry. 1990 Jan 16;29(2):355–365. doi: 10.1021/bi00454a008. [DOI] [PubMed] [Google Scholar]
  64. Vorherr T., Knöpfel L., Hofmann F., Mollner S., Pfeuffer T., Carafoli E. The calmodulin binding domain of nitric oxide synthase and adenylyl cyclase. Biochemistry. 1993 Jun 15;32(23):6081–6088. doi: 10.1021/bi00074a020. [DOI] [PubMed] [Google Scholar]
  65. Wang Y., Guo W., Liang L., Esselman W. J. Phosphorylation of CD45 by casein kinase 2. Modulation of activity and mutational analysis. J Biol Chem. 1999 Mar 12;274(11):7454–7461. doi: 10.1074/jbc.274.11.7454. [DOI] [PubMed] [Google Scholar]
  66. Williams J. P., Jo H., Sacks D. B., Crimmins D. L., Thoma R. S., Hunnicutt R. E., Radding W., Sharma R. K., McDonald J. M. Tyrosine-phosphorylated calmodulin has reduced biological activity. Arch Biochem Biophys. 1994 Nov 15;315(1):119–126. doi: 10.1006/abbi.1994.1479. [DOI] [PubMed] [Google Scholar]
  67. Yuan T., Walsh M. P., Sutherland C., Fabian H., Vogel H. J. Calcium-dependent and -independent interactions of the calmodulin-binding domain of cyclic nucleotide phosphodiesterase with calmodulin. Biochemistry. 1999 Feb 2;38(5):1446–1455. doi: 10.1021/bi9816453. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES