Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1999 Dec 1;344(Pt 2):527–533.

Fine mapping of inhibitory anti-alpha5 monoclonal antibody epitopes that differentially affect integrin-ligand binding.

L Burrows 1, K Clark 1, A P Mould 1, M J Humphries 1
PMCID: PMC1220672  PMID: 10567237

Abstract

The high-affinity interaction of integrin alpha5beta1 with the central cell-binding domain of fibronectin requires both the Arg-Gly-Asp (RGD) sequence (in the tenth type III repeat) and a second site Pro-His-Ser-Arg-Asn (PHSRN) in the adjacent ninth type III repeat, which synergizes with RGD. Arg-Arg-Glu-Thr-Ala-Trp-Ala (RRETAWA) is a novel peptidic ligand for alpha5beta1, identified by phage display, which blocks alpha5beta1-mediated cell adhesion to fibronectin. A key question is the location of the binding sites for these ligand sequences within the integrin. In this study we have identified residues that form part of the epitopes of three inhibitory anti-alpha5 monoclonal antibodies (mAbs): 16, P1D6 and SNAKA52. These mAbs have distinct functional properties. mAb 16 blocks the recognition of RGD and RRETAWA, whereas P1D6 blocks binding to the synergy sequence. The binding of SNAKA52 is inhibited by anti-beta1 mAbs, indicating that its epitope is close to the interface between the alpha and beta subunits. Residues in human alpha5 were replaced with the corresponding residues in mouse alpha5 by site-directed mutagenesis; wild-type or mutant human alpha5 was expressed on the surface of alpha5-deficient Chinese hamster ovary cells. mAb binding was assessed by flow cytometry and by adhesion to the central cell-binding domain of fibronectin or RRETAWA by cell attachment assay. All three epitopes were located to different putative loops in the N-terminal domain of alpha5. As expected, disruption of these epitopes had no effect on ligand recognition by alpha5beta1. The locations of these epitopes are consistent with the beta-propeller model for integrin alpha-subunit structure and allow us to propose a topological image of the integrin-ligand complex.

Full Text

The Full Text of this article is available as a PDF (177.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aota S., Nomizu M., Yamada K. M. The short amino acid sequence Pro-His-Ser-Arg-Asn in human fibronectin enhances cell-adhesive function. J Biol Chem. 1994 Oct 7;269(40):24756–24761. [PubMed] [Google Scholar]
  2. Copié V., Tomita Y., Akiyama S. K., Aota S., Yamada K. M., Venable R. M., Pastor R. W., Krueger S., Torchia D. A. Solution structure and dynamics of linked cell attachment modules of mouse fibronectin containing the RGD and synergy regions: comparison with the human fibronectin crystal structure. J Mol Biol. 1998 Apr 3;277(3):663–682. doi: 10.1006/jmbi.1998.1616. [DOI] [PubMed] [Google Scholar]
  3. Danen E. H., Aota S., van Kraats A. A., Yamada K. M., Ruiter D. J., van Muijen G. N. Requirement for the synergy site for cell adhesion to fibronectin depends on the activation state of integrin alpha 5 beta 1. J Biol Chem. 1995 Sep 15;270(37):21612–21618. doi: 10.1074/jbc.270.37.21612. [DOI] [PubMed] [Google Scholar]
  4. Higgins D. G., Bleasby A. J., Fuchs R. CLUSTAL V: improved software for multiple sequence alignment. Comput Appl Biosci. 1992 Apr;8(2):189–191. doi: 10.1093/bioinformatics/8.2.189. [DOI] [PubMed] [Google Scholar]
  5. Humphries M. J., Newham P. The structure of cell-adhesion molecules. Trends Cell Biol. 1998 Feb;8(2):78–83. [PubMed] [Google Scholar]
  6. Irie A., Kamata T., Takada Y. Multiple loop structures critical for ligand binding of the integrin alpha4 subunit in the upper face of the beta-propeller mode 1. Proc Natl Acad Sci U S A. 1997 Jul 8;94(14):7198–7203. doi: 10.1073/pnas.94.14.7198. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Kamata T., Irie A., Tokuhira M., Takada Y. Critical residues of integrin alphaIIb subunit for binding of alphaIIbbeta3 (glycoprotein IIb-IIIa) to fibrinogen and ligand-mimetic antibodies (PAC-1, OP-G2, and LJ-CP3). J Biol Chem. 1996 Aug 2;271(31):18610–18615. doi: 10.1074/jbc.271.31.18610. [DOI] [PubMed] [Google Scholar]
  8. Kamata T., Puzon W., Takada Y. Identification of putative ligand-binding sites of the integrin alpha 4 beta 1 (VLA-4, CD49d/CD29) Biochem J. 1995 Feb 1;305(Pt 3):945–951. doi: 10.1042/bj3050945. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Koivunen E., Wang B., Ruoslahti E. Isolation of a highly specific ligand for the alpha 5 beta 1 integrin from a phage display library. J Cell Biol. 1994 Feb;124(3):373–380. doi: 10.1083/jcb.124.3.373. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Krukonis E. S., Dersch P., Eble J. A., Isberg R. R. Differential effects of integrin alpha chain mutations on invasin and natural ligand interaction. J Biol Chem. 1998 Nov 27;273(48):31837–31843. doi: 10.1074/jbc.273.48.31837. [DOI] [PubMed] [Google Scholar]
  11. Kunkel T. A., Roberts J. D., Zakour R. A. Rapid and efficient site-specific mutagenesis without phenotypic selection. Methods Enzymol. 1987;154:367–382. doi: 10.1016/0076-6879(87)54085-x. [DOI] [PubMed] [Google Scholar]
  12. Leahy D. J., Aukhil I., Erickson H. P. 2.0 A crystal structure of a four-domain segment of human fibronectin encompassing the RGD loop and synergy region. Cell. 1996 Jan 12;84(1):155–164. doi: 10.1016/s0092-8674(00)81002-8. [DOI] [PubMed] [Google Scholar]
  13. Lee J. O., Rieu P., Arnaout M. A., Liddington R. Crystal structure of the A domain from the alpha subunit of integrin CR3 (CD11b/CD18). Cell. 1995 Feb 24;80(4):631–638. doi: 10.1016/0092-8674(95)90517-0. [DOI] [PubMed] [Google Scholar]
  14. Loftus J. C., Halloran C. E., Ginsberg M. H., Feigen L. P., Zablocki J. A., Smith J. W. The amino-terminal one-third of alpha IIb defines the ligand recognition specificity of integrin alpha IIb beta 3. J Biol Chem. 1996 Jan 26;271(4):2033–2039. doi: 10.1074/jbc.271.4.2033. [DOI] [PubMed] [Google Scholar]
  15. Loftus J. C., Liddington R. C. Cell adhesion in vascular biology. New insights into integrin-ligand interaction. J Clin Invest. 1997 May 15;99(10):2302–2306. doi: 10.1172/JCI119408. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Mould A. P., Akiyama S. K., Humphries M. J. Regulation of integrin alpha 5 beta 1-fibronectin interactions by divalent cations. Evidence for distinct classes of binding sites for Mn2+, Mg2+, and Ca2+. J Biol Chem. 1995 Nov 3;270(44):26270–26277. doi: 10.1074/jbc.270.44.26270. [DOI] [PubMed] [Google Scholar]
  17. Mould A. P., Akiyama S. K., Humphries M. J. The inhibitory anti-beta1 integrin monoclonal antibody 13 recognizes an epitope that is attenuated by ligand occupancy. Evidence for allosteric inhibition of integrin function. J Biol Chem. 1996 Aug 23;271(34):20365–20374. doi: 10.1074/jbc.271.34.20365. [DOI] [PubMed] [Google Scholar]
  18. Mould A. P., Askari J. A., Aota S. i., Yamada K. M., Irie A., Takada Y., Mardon H. J., Humphries M. J. Defining the topology of integrin alpha5beta1-fibronectin interactions using inhibitory anti-alpha5 and anti-beta1 monoclonal antibodies. Evidence that the synergy sequence of fibronectin is recognized by the amino-terminal repeats of the alpha5 subunit. J Biol Chem. 1997 Jul 11;272(28):17283–17292. doi: 10.1074/jbc.272.28.17283. [DOI] [PubMed] [Google Scholar]
  19. Mould A. P., Burrows L., Humphries M. J. Identification of amino acid residues that form part of the ligand-binding pocket of integrin alpha5 beta1. J Biol Chem. 1998 Oct 2;273(40):25664–25672. doi: 10.1074/jbc.273.40.25664. [DOI] [PubMed] [Google Scholar]
  20. Mould A. P., Garratt A. N., Puzon-McLaughlin W., Takada Y., Humphries M. J. Regulation of integrin function: evidence that bivalent-cation-induced conformational changes lead to the unmasking of ligand-binding sites within integrin alpha5 beta1. Biochem J. 1998 May 1;331(Pt 3):821–828. doi: 10.1042/bj3310821. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Newham P., Humphries M. J. Integrin adhesion receptors: structure, function and implications for biomedicine. Mol Med Today. 1996 Jul;2(7):304–313. doi: 10.1016/1357-4310(96)10021-6. [DOI] [PubMed] [Google Scholar]
  22. Obara M., Kang M. S., Yamada K. M. Site-directed mutagenesis of the cell-binding domain of human fibronectin: separable, synergistic sites mediate adhesive function. Cell. 1988 May 20;53(4):649–657. doi: 10.1016/0092-8674(88)90580-6. [DOI] [PubMed] [Google Scholar]
  23. Pierschbacher M. D., Ruoslahti E. Cell attachment activity of fibronectin can be duplicated by small synthetic fragments of the molecule. Nature. 1984 May 3;309(5963):30–33. doi: 10.1038/309030a0. [DOI] [PubMed] [Google Scholar]
  24. Schiffer S. G., Hemler M. E., Lobb R. R., Tizard R., Osborn L. Molecular mapping of functional antibody binding sites of alpha 4 integrin. J Biol Chem. 1995 Jun 16;270(24):14270–14273. doi: 10.1074/jbc.270.24.14270. [DOI] [PubMed] [Google Scholar]
  25. Schreiner C. L., Bauer J. S., Danilov Y. N., Hussein S., Sczekan M. M., Juliano R. L. Isolation and characterization of Chinese hamster ovary cell variants deficient in the expression of fibronectin receptor. J Cell Biol. 1989 Dec;109(6 Pt 1):3157–3167. doi: 10.1083/jcb.109.6.3157. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Springer T. A. Folding of the N-terminal, ligand-binding region of integrin alpha-subunits into a beta-propeller domain. Proc Natl Acad Sci U S A. 1997 Jan 7;94(1):65–72. doi: 10.1073/pnas.94.1.65. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Takada Y., Kamata T., Irie A., Puzon-McLaughlin W., Zhang X. P. Structural basis of integrin-mediated signal transduction. Matrix Biol. 1997 Oct;16(4):143–151. doi: 10.1016/s0945-053x(97)90002-0. [DOI] [PubMed] [Google Scholar]
  28. Tozer E. C., Liddington R. C., Sutcliffe M. J., Smeeton A. H., Loftus J. C. Ligand binding to integrin alphaIIbbeta3 is dependent on a MIDAS-like domain in the beta3 subunit. J Biol Chem. 1996 Sep 6;271(36):21978–21984. doi: 10.1074/jbc.271.36.21978. [DOI] [PubMed] [Google Scholar]
  29. Tuckwell D. S., Brass A., Humphries M. J. Homology modelling of integrin EF-hands. Evidence for widespread use of a conserved cation-binding site. Biochem J. 1992 Jul 1;285(Pt 1):325–331. doi: 10.1042/bj2850325. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Tuckwell D. S., Humphries M. J. A structure prediction for the ligand-binding region of the integrin beta subunit: evidence for the presence of a von Willebrand factor A domain. FEBS Lett. 1997 Jan 6;400(3):297–303. doi: 10.1016/s0014-5793(96)01368-3. [DOI] [PubMed] [Google Scholar]
  31. Tuckwell D. S., Humphries M. J., Brass A. A secondary structure model of the integrin alpha subunit N-terminal domain based on analysis of multiple alignments. Cell Adhes Commun. 1994 Oct;2(5):385–402. doi: 10.3109/15419069409004450. [DOI] [PubMed] [Google Scholar]
  32. Yamada K. M., Kennedy D. W. Dualistic nature of adhesive protein function: fibronectin and its biologically active peptide fragments can autoinhibit fibronectin function. J Cell Biol. 1984 Jul;99(1 Pt 1):29–36. doi: 10.1083/jcb.99.1.29. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES